Optimal Lower Bounds for Universal Relation, and for Samplers and Finding Duplicates in Streams

M. Kapralov, Jelani Nelson, J. Pachocki, Zhengyu Wang, David P. Woodruff, Mobin Yahyazadeh
{"title":"Optimal Lower Bounds for Universal Relation, and for Samplers and Finding Duplicates in Streams","authors":"M. Kapralov, Jelani Nelson, J. Pachocki, Zhengyu Wang, David P. Woodruff, Mobin Yahyazadeh","doi":"10.1109/FOCS.2017.50","DOIUrl":null,"url":null,"abstract":"In the communication problem UR (universal relation), Alice and Bob respectively receive x, y ∊{0,1\\}^n with the promise that x≠ y. The last player to receive a message must output an index i such that x_i≠ y_i. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly \\Theta(\\min\\{n,\\log(1/δ)\\log^2(\\frac n{\\log(1/δ)})\\}) for failure probability δ. Our lower bound holds even if promised \\mathop{support}(y)⊄ \\mathop{support}(x). As a corollary, we obtain optimal lower bounds for ℓ_p-sampling in strict turnstile streams for 0\\le p streams for 0 ≤ p","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In the communication problem UR (universal relation), Alice and Bob respectively receive x, y ∊{0,1\}^n with the promise that x≠ y. The last player to receive a message must output an index i such that x_i≠ y_i. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly \Theta(\min\{n,\log(1/δ)\log^2(\frac n{\log(1/δ)})\}) for failure probability δ. Our lower bound holds even if promised \mathop{support}(y)⊄ \mathop{support}(x). As a corollary, we obtain optimal lower bounds for ℓ_p-sampling in strict turnstile streams for 0\le p streams for 0 ≤ p
通用关系的最优下界,以及采样器和查找流中的重复项
在通信问题UR (universal relation)中,Alice和Bob分别收到x, y ∊{0,1\}^n,并承诺x≠y.最后一个接收到消息的播放器必须输出索引i,这样x_i≠y_i。我们证明了该问题在公共币模型中的随机单向通信复杂度正好是\Theta(\min\{n,\log(1/δ)\log^2(\frac n{\log(1/δ)})\})对于失败概率δ。我们的下限保持不变,即使承诺\mathop{support}(y)⊄\ mathop{支持}(x)。作为一个结论,我们得到了严格旋转门流中_# x2113;_p采样的最优下界,为0\ p流为0 ≤p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信