Sequential Pattern Mining with Optimization Calling MapReduce Function on MapReduce Framework

Jinhyun Kim, Kyuseok Shim
{"title":"Sequential Pattern Mining with Optimization Calling MapReduce Function on MapReduce Framework","authors":"Jinhyun Kim, Kyuseok Shim","doi":"10.3745/KIPSTD.2011.18D.2.081","DOIUrl":null,"url":null,"abstract":"Sequential pattern mining that determines frequent patterns appearing in a given set of sequences is an important data mining problem with broad applications. For example, sequential pattern mining can find the web access patterns, customer`s purchase patterns and DNA sequences related with specific disease. In this paper, we develop the sequential pattern mining algorithms using MapReduce framework. Our algorithms distribute input data to several machines and find frequent sequential patterns in parallel. With synthetic data sets, we did a comprehensive performance study with varying various parameters. Our experimental results show that linear speed up can be achieved through our algorithms with increasing the number of used machines.","PeriodicalId":348746,"journal":{"name":"The Kips Transactions:partd","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partd","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTD.2011.18D.2.081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential pattern mining that determines frequent patterns appearing in a given set of sequences is an important data mining problem with broad applications. For example, sequential pattern mining can find the web access patterns, customer`s purchase patterns and DNA sequences related with specific disease. In this paper, we develop the sequential pattern mining algorithms using MapReduce framework. Our algorithms distribute input data to several machines and find frequent sequential patterns in parallel. With synthetic data sets, we did a comprehensive performance study with varying various parameters. Our experimental results show that linear speed up can be achieved through our algorithms with increasing the number of used machines.
基于MapReduce框架的优化调用MapReduce函数的顺序模式挖掘
序列模式挖掘是一个重要的数据挖掘问题,它可以确定在给定序列集中出现的频繁模式。例如,序列模式挖掘可以发现网络访问模式、客户购买模式和与特定疾病相关的DNA序列。在本文中,我们开发了基于MapReduce框架的顺序模式挖掘算法。我们的算法将输入数据分布到几台机器上,并并行地发现频繁的顺序模式。使用合成数据集,我们使用不同的参数进行了全面的性能研究。实验结果表明,随着使用机器数量的增加,我们的算法可以实现线性加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信