{"title":"Data-Flow Analyses as Effects and Graded Monads","authors":"Andrej Ivaskovic, A. Mycroft, Dominic A. Orchard","doi":"10.4230/LIPIcs.FSCD.2020.15","DOIUrl":null,"url":null,"abstract":"In static analysis, two frameworks have been studied extensively: monotone data-flow analysis and type-and-effect systems. Whilst both are seen as general analysis frameworks, their relationship has remained unclear. Here we show that monotone data-flow analyses can be encoded as effect systems in a uniform way, via algebras of transfer functions. This helps to answer questions about the most appropriate structure for general effect algebras, especially with regards capturing control-flow precisely. Via the perspective of capturing data-flow analyses, we show the recent suggestion of using effect quantales is not general enough as it excludes non-distributive analyses e.g., constant propagation. By rephrasing the McCarthy transformation, we then model monotone data-flow effects via graded monads. This provides a model of data-flow analyses that can be used to reason about analysis correctness at the semantic level, and to embed data-flow analyses into type systems. 2012 ACM Subject Classification Theory of computation → Type theory","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2020.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In static analysis, two frameworks have been studied extensively: monotone data-flow analysis and type-and-effect systems. Whilst both are seen as general analysis frameworks, their relationship has remained unclear. Here we show that monotone data-flow analyses can be encoded as effect systems in a uniform way, via algebras of transfer functions. This helps to answer questions about the most appropriate structure for general effect algebras, especially with regards capturing control-flow precisely. Via the perspective of capturing data-flow analyses, we show the recent suggestion of using effect quantales is not general enough as it excludes non-distributive analyses e.g., constant propagation. By rephrasing the McCarthy transformation, we then model monotone data-flow effects via graded monads. This provides a model of data-flow analyses that can be used to reason about analysis correctness at the semantic level, and to embed data-flow analyses into type systems. 2012 ACM Subject Classification Theory of computation → Type theory