{"title":"The Weisfeiler-Leman dimension of planar graphs is at most 3","authors":"Sandra Kiefer, I. Ponomarenko, Pascal Schweitzer","doi":"10.1145/3333003","DOIUrl":null,"url":null,"abstract":"We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3333003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively.