Feature extraction of human sleep EEG signals using wavelet transform and Fourier transform

Md. Riyasat Azim, Md. Shahedul Amin, S. Haque, M. N. Ambia, Md. A. Shoeb
{"title":"Feature extraction of human sleep EEG signals using wavelet transform and Fourier transform","authors":"Md. Riyasat Azim, Md. Shahedul Amin, S. Haque, M. N. Ambia, Md. A. Shoeb","doi":"10.1109/ICSPS.2010.5555506","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) is a complex signal resulting from postsynaptic potentials of cortical pyramidal cells and an important brain state indicator with specific state dependent features. Modern brain research is intimately linked to the feasibility to record the EEG and to its quantitative analysis. EEG spectral analysis is an important method to investigate the hidden properties and hence the brain activities. Spectral analysis of sleep EEG signal provides acute insight into the features of different stages of sleep which can be utilized to differentiate between normal and pathological conditions. This paper describes the process of extracting features of human sleep EEG signals through the use of multi resolution Discrete Wavelet Transform and Fast Fourier Transform. Discrete Wavelet Transform offers representations of the signals in the time-frequency plane giving information regarding the time localization of the spectral components at different stages of sleep in human beings and Fast Fourier Transform provides the spectral information. This paper also discusses the clinical correlation associated with sleep EEG signals in brief.","PeriodicalId":234084,"journal":{"name":"2010 2nd International Conference on Signal Processing Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPS.2010.5555506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Electroencephalogram (EEG) is a complex signal resulting from postsynaptic potentials of cortical pyramidal cells and an important brain state indicator with specific state dependent features. Modern brain research is intimately linked to the feasibility to record the EEG and to its quantitative analysis. EEG spectral analysis is an important method to investigate the hidden properties and hence the brain activities. Spectral analysis of sleep EEG signal provides acute insight into the features of different stages of sleep which can be utilized to differentiate between normal and pathological conditions. This paper describes the process of extracting features of human sleep EEG signals through the use of multi resolution Discrete Wavelet Transform and Fast Fourier Transform. Discrete Wavelet Transform offers representations of the signals in the time-frequency plane giving information regarding the time localization of the spectral components at different stages of sleep in human beings and Fast Fourier Transform provides the spectral information. This paper also discusses the clinical correlation associated with sleep EEG signals in brief.
基于小波变换和傅立叶变换的睡眠脑电信号特征提取
脑电图(EEG)是皮层锥体细胞突触后电位产生的复杂信号,是重要的脑状态指示器,具有特定的状态依赖特征。现代脑研究与脑电图记录的可行性及其定量分析密切相关。脑电频谱分析是研究脑活动的一种重要方法。睡眠脑电图信号的频谱分析提供了对不同睡眠阶段特征的敏锐洞察,可以用来区分正常和病理状态。本文描述了利用多分辨率离散小波变换和快速傅立叶变换提取人类睡眠脑电信号特征的过程。离散小波变换提供了信号在时频平面上的表示,给出了人类不同睡眠阶段频谱成分的时间定位信息,快速傅立叶变换提供了频谱信息。本文还简要讨论了睡眠脑电图信号的临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信