A monolingual approach to detection of text reuse in Russian-English collection

O. Bakhteev, Rita Kuznetsova, A. Romanov, A. Khritankov
{"title":"A monolingual approach to detection of text reuse in Russian-English collection","authors":"O. Bakhteev, Rita Kuznetsova, A. Romanov, A. Khritankov","doi":"10.1109/AINL-ISMW-FRUCT.2015.7382960","DOIUrl":null,"url":null,"abstract":"In this paper we develop a method for cross-lingual (Russian and English) text reuse detection. The method is based on the monolingual approach - translation of texts into one language and reduction to the text similarity problem. We split texts into non-overlapping fragments and compare fragments to each other by means of different metrics - BLEU(1-2), ME-TEOR, cosine similarity between bag-of-words representations of each snippet, and cosine similarity between vectors obtained from doc2vec-trained model. We explore the impact of choice of metric on the quality of text reuse detection. We assess quality of the method on a sample of a hundred scientific documents, originally in Russian, machine translated into English. Preliminary findings demonstrate feasibility of the approach.","PeriodicalId":122232,"journal":{"name":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we develop a method for cross-lingual (Russian and English) text reuse detection. The method is based on the monolingual approach - translation of texts into one language and reduction to the text similarity problem. We split texts into non-overlapping fragments and compare fragments to each other by means of different metrics - BLEU(1-2), ME-TEOR, cosine similarity between bag-of-words representations of each snippet, and cosine similarity between vectors obtained from doc2vec-trained model. We explore the impact of choice of metric on the quality of text reuse detection. We assess quality of the method on a sample of a hundred scientific documents, originally in Russian, machine translated into English. Preliminary findings demonstrate feasibility of the approach.
俄语-英语文本重复使用的单语检测方法
本文提出了一种跨语言(俄语和英语)文本重用检测方法。该方法基于单语方法——将文本翻译成一种语言并简化为文本相似度问题。我们将文本分割为不重叠的片段,并通过不同的度量- BLEU(1-2), ME-TEOR,每个片段的词袋表示之间的余弦相似度以及从doc2vec训练模型中获得的向量之间的余弦相似度来比较片段之间的相互比较。我们探讨了度量的选择对文本重用检测质量的影响。我们对100份科学文献样本的质量进行了评估,这些文献最初是俄语,机器翻译成英语。初步结果证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信