Making better use of edges via perceptual grouping

Yonggang Qi, Yi-Zhe Song, T. Xiang, Honggang Zhang, Timothy M. Hospedales, Yi Li, Jun Guo
{"title":"Making better use of edges via perceptual grouping","authors":"Yonggang Qi, Yi-Zhe Song, T. Xiang, Honggang Zhang, Timothy M. Hospedales, Yi Li, Jun Guo","doi":"10.1109/CVPR.2015.7298795","DOIUrl":null,"url":null,"abstract":"We propose a perceptual grouping framework that organizes image edges into meaningful structures and demonstrate its usefulness on various computer vision tasks. Our grouper formulates edge grouping as a graph partition problem, where a learning to rank method is developed to encode probabilities of candidate edge pairs. In particular, RankSVM is employed for the first time to combine multiple Gestalt principles as cue for edge grouping. Afterwards, an edge grouping based object proposal measure is introduced that yields proposals comparable to state-of-the-art alternatives. We further show how human-like sketches can be generated from edge groupings and consequently used to deliver state-of-the-art sketch-based image retrieval performance. Last but not least, we tackle the problem of freehand human sketch segmentation by utilizing the proposed grouper to cluster strokes into semantic object parts.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

We propose a perceptual grouping framework that organizes image edges into meaningful structures and demonstrate its usefulness on various computer vision tasks. Our grouper formulates edge grouping as a graph partition problem, where a learning to rank method is developed to encode probabilities of candidate edge pairs. In particular, RankSVM is employed for the first time to combine multiple Gestalt principles as cue for edge grouping. Afterwards, an edge grouping based object proposal measure is introduced that yields proposals comparable to state-of-the-art alternatives. We further show how human-like sketches can be generated from edge groupings and consequently used to deliver state-of-the-art sketch-based image retrieval performance. Last but not least, we tackle the problem of freehand human sketch segmentation by utilizing the proposed grouper to cluster strokes into semantic object parts.
通过感知分组更好地利用边缘
我们提出了一个感知分组框架,将图像边缘组织成有意义的结构,并证明了它在各种计算机视觉任务中的实用性。我们将边分组表述为一个图划分问题,其中开发了一种学习排序方法来编码候选边对的概率。其中,RankSVM首次将多个格式塔原理结合起来作为边缘分组的线索。然后,介绍了一种基于边缘分组的对象建议度量,该度量产生与最先进的替代方案相当的建议。我们进一步展示了如何从边缘分组生成类似人类的草图,并因此用于提供最先进的基于草图的图像检索性能。最后,我们利用提出的grouper算法将笔画聚类为语义对象部分,解决了手绘人体素描分割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信