Evolution of higher moments of multiplicity distribution

Radka Sochorová, B. Tomášik
{"title":"Evolution of higher moments of multiplicity distribution","authors":"Radka Sochorová, B. Tomášik","doi":"10.22323/1.336.0256","DOIUrl":null,"url":null,"abstract":"Evolution of a multiplicity distribution can be described with the help of master equation. We first look at 3rd and 4th factorial moments of multiplicity distributions and derive their equilibrium values. From them central moments and other ratios can be calculated. We study the master equation for a fixed temperature, because we want to know how fast different moments of the multiplicity distribution approach their equilibrium value. Then we investigate the situation in which the temperature of the system decreases. We find out that in the non-equilibrium state, higher factorial moments differ more from their equilibrium values than the lower moments and that the behaviour of a combination of the central moments depends on the combination we choose.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evolution of a multiplicity distribution can be described with the help of master equation. We first look at 3rd and 4th factorial moments of multiplicity distributions and derive their equilibrium values. From them central moments and other ratios can be calculated. We study the master equation for a fixed temperature, because we want to know how fast different moments of the multiplicity distribution approach their equilibrium value. Then we investigate the situation in which the temperature of the system decreases. We find out that in the non-equilibrium state, higher factorial moments differ more from their equilibrium values than the lower moments and that the behaviour of a combination of the central moments depends on the combination we choose.
多重分布高阶矩的演化
一个多重分布的演化可以用主方程来描述。我们首先看复数分布的第3和第4阶乘矩,并得出它们的平衡值。从中可以计算出中心矩和其他比值。我们研究固定温度下的主方程,因为我们想知道多重分布的不同时刻接近其平衡值的速度。然后研究了系统温度降低的情况。我们发现,在非平衡状态下,高阶乘矩比低阶乘矩与其平衡值的差异更大,并且中心矩组合的行为取决于我们选择的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信