Spatiotemporal Bayesian cell population tracking and analysis with lineage construction

Luke M. A. Beaumont, James Wake, eld, J. Noble
{"title":"Spatiotemporal Bayesian cell population tracking and analysis with lineage construction","authors":"Luke M. A. Beaumont, James Wake, eld, J. Noble","doi":"10.1109/ISBI.2008.4541002","DOIUrl":null,"url":null,"abstract":"Tracking of cell populations in vitro in time lapse microscopy images enables automatic high throughput spatiotemporal measurements of a range of cell cycle mechanics and dynamics. Both in clinical and academic environments, large scale cellular data analysis using such methods stands to facilitate a paradigm shift in approaches to understanding cell biology. In this paper, we present a novel approach to cell population tracking and segmentation. We employ the CONDENSATION algorithm in tandem with Fast Levels Sets and Exclusion Zones for robust tracking and pixel-accurate segmentation. The algorithm feeds its output to a lineage filter. The complete approach is validated in terms of its ability to track and identify nuclei, and by its success in detecting abnormalities in the length of mitosis.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tracking of cell populations in vitro in time lapse microscopy images enables automatic high throughput spatiotemporal measurements of a range of cell cycle mechanics and dynamics. Both in clinical and academic environments, large scale cellular data analysis using such methods stands to facilitate a paradigm shift in approaches to understanding cell biology. In this paper, we present a novel approach to cell population tracking and segmentation. We employ the CONDENSATION algorithm in tandem with Fast Levels Sets and Exclusion Zones for robust tracking and pixel-accurate segmentation. The algorithm feeds its output to a lineage filter. The complete approach is validated in terms of its ability to track and identify nuclei, and by its success in detecting abnormalities in the length of mitosis.
时空贝叶斯细胞群跟踪与谱系构建分析
在时间推移显微镜图像中对体外细胞群进行跟踪,可以对一系列细胞周期力学和动力学进行自动高通量时空测量。无论是在临床还是学术环境中,使用这种方法进行大规模细胞数据分析,都有助于在理解细胞生物学的方法上实现范式转变。在本文中,我们提出了一种新的细胞群跟踪和分割方法。我们采用冷凝算法与快速水平集和禁区串联进行鲁棒跟踪和像素精确分割。该算法将其输出馈送到沿袭过滤器。完整的方法在其跟踪和识别细胞核的能力方面得到了验证,并通过其成功地检测有丝分裂长度的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信