LIUM ASR systems for the 2016 Multi-Genre Broadcast Arabic challenge

N. Tomashenko, Kevin Vythelingum, Anthony Rousseau, Y. Estève
{"title":"LIUM ASR systems for the 2016 Multi-Genre Broadcast Arabic challenge","authors":"N. Tomashenko, Kevin Vythelingum, Anthony Rousseau, Y. Estève","doi":"10.1109/SLT.2016.7846278","DOIUrl":null,"url":null,"abstract":"This paper describes the automatic speech recognition (ASR) systems developed by LIUM in the framework of the 2016 Multi-Genre Broadcast (MGB-2) Challenge in the Arabic language. LIUM participated in the first of the two proposed tasks, namely the speech-to-text transcription of Aljazeera recordings. We present the approaches and details found in our systems, as well as our results in the evaluation campaign: the primary LIUM ASR system attained the second position. The main aspects come from the use of GMM-derived features for training a DNN, combined with the use of time-delay neural networks for acoustic models, the use of two different approaches in order to automatically phonetize Arabic words, and finally, the training data selection strategy for acoustic and language models.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper describes the automatic speech recognition (ASR) systems developed by LIUM in the framework of the 2016 Multi-Genre Broadcast (MGB-2) Challenge in the Arabic language. LIUM participated in the first of the two proposed tasks, namely the speech-to-text transcription of Aljazeera recordings. We present the approaches and details found in our systems, as well as our results in the evaluation campaign: the primary LIUM ASR system attained the second position. The main aspects come from the use of GMM-derived features for training a DNN, combined with the use of time-delay neural networks for acoustic models, the use of two different approaches in order to automatically phonetize Arabic words, and finally, the training data selection strategy for acoustic and language models.
2016年多类型广播阿拉伯语挑战赛LIUM ASR系统
本文介绍了LIUM在2016年阿拉伯语多类型广播(MGB-2)挑战赛框架下开发的自动语音识别(ASR)系统。LIUM参与了两项拟议任务中的第一项,即半岛电视台录音的语音到文本转录。我们介绍了在我们的系统中发现的方法和细节,以及我们在评估活动中的结果:主要的LIUM ASR系统获得了第二名。主要方面来自使用gmm衍生的特征来训练DNN,结合使用时滞神经网络进行声学模型,使用两种不同的方法来自动拼音阿拉伯语单词,最后是声学和语言模型的训练数据选择策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信