Noise tolerant object recognition using Gabor filtering

Joni-Kristian Kämäräinen, V. Kyrki, H. Kälviäinen
{"title":"Noise tolerant object recognition using Gabor filtering","authors":"Joni-Kristian Kämäräinen, V. Kyrki, H. Kälviäinen","doi":"10.1109/ICDSP.2002.1028344","DOIUrl":null,"url":null,"abstract":"The choice of features for invariant object recognition is one of the most essential problems in computer vision. The authors have previously proposed Gabor (1946) filtering based feature extraction methods which have been successfully applied in invariant object recognition. In this study, the Gabor filtering based feature extraction is further analysed in terms of distortion tolerance which is an essential property for many applications. Experiments indicate that an accurate recognition can be achieved in the presence of significant amounts of distortions.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The choice of features for invariant object recognition is one of the most essential problems in computer vision. The authors have previously proposed Gabor (1946) filtering based feature extraction methods which have been successfully applied in invariant object recognition. In this study, the Gabor filtering based feature extraction is further analysed in terms of distortion tolerance which is an essential property for many applications. Experiments indicate that an accurate recognition can be achieved in the presence of significant amounts of distortions.
基于Gabor滤波的抗噪目标识别
不变目标识别的特征选择是计算机视觉中最重要的问题之一。作者先前提出了Gabor(1946)滤波的特征提取方法,并成功地应用于不变目标识别。在这项研究中,进一步分析了基于Gabor滤波的特征提取,畸变容限是许多应用的基本特性。实验表明,在存在大量失真的情况下,可以实现准确的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信