LOOM: Showing the Dynamics of Power Laws in Twitter Data

Maryanne Doyle, Mark T. Keane
{"title":"LOOM: Showing the Dynamics of Power Laws in Twitter Data","authors":"Maryanne Doyle, Mark T. Keane","doi":"10.1109/iV.2017.50","DOIUrl":null,"url":null,"abstract":"LOOM is advanced as a new visualisation for changes in ranks and trends in power-law data that is changing dynamically over time. A comparison between LOOM and existing methods for visualising such data (e.g., time-series graphs, typical analytics dashboards). Several exemplar data sets are shown, using LOOM, drawn from the tracking of news stories on Twitter. The basis for the LOOM visualisation is elaborated and it is shown how it avoids the pitfalls arising in other line-graph representations.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

LOOM is advanced as a new visualisation for changes in ranks and trends in power-law data that is changing dynamically over time. A comparison between LOOM and existing methods for visualising such data (e.g., time-series graphs, typical analytics dashboards). Several exemplar data sets are shown, using LOOM, drawn from the tracking of news stories on Twitter. The basis for the LOOM visualisation is elaborated and it is shown how it avoids the pitfalls arising in other line-graph representations.
LOOM:在Twitter数据中展示幂律的动态
LOOM是一种新的可视化方法,用于显示随时间动态变化的幂律数据的等级变化和趋势。LOOM与现有数据可视化方法(如时间序列图、典型分析仪表板)之间的比较。使用LOOM从Twitter上的新闻报道跟踪中提取了几个示例数据集。详细阐述了LOOM可视化的基础,并说明了它如何避免其他线形图表示中出现的陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信