Bayesian Optimization and Gradient Boosting to Detect Phishing Websites

Rakesh Pavan, Madhumitha Nara, S. Gopinath, Nagamma Patil
{"title":"Bayesian Optimization and Gradient Boosting to Detect Phishing Websites","authors":"Rakesh Pavan, Madhumitha Nara, S. Gopinath, Nagamma Patil","doi":"10.1109/CISS50987.2021.9400317","DOIUrl":null,"url":null,"abstract":"We propose an Extreme Gradient Boosting framework for classification and regression problems emerging in machine learning for small-sized data sources sampled from a discrete distribution, i.e. data containing discrete or quantized attributes. The model parameters are iteratively refined from a prior belief for specific use cases using Bayesian optimization. We focus the application area of this framework on detecting fraudulent websites. With properly stated reasoning, we empirically test our methodology on a publicly available and bench-marked UCI Phishing dataset to demonstrate the superior performance of this approach as compared to existing methods in the literature.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an Extreme Gradient Boosting framework for classification and regression problems emerging in machine learning for small-sized data sources sampled from a discrete distribution, i.e. data containing discrete or quantized attributes. The model parameters are iteratively refined from a prior belief for specific use cases using Bayesian optimization. We focus the application area of this framework on detecting fraudulent websites. With properly stated reasoning, we empirically test our methodology on a publicly available and bench-marked UCI Phishing dataset to demonstrate the superior performance of this approach as compared to existing methods in the literature.
基于贝叶斯优化和梯度增强的钓鱼网站检测
我们提出了一个极端梯度增强框架,用于从离散分布中采样的小型数据源(即包含离散或量化属性的数据)在机器学习中出现的分类和回归问题。使用贝叶斯优化从特定用例的先验信念迭代地改进模型参数。我们将该框架的应用领域重点放在检测欺诈网站上。通过正确陈述的推理,我们在公开可用的基准UCI网络钓鱼数据集上对我们的方法进行了实证测试,以证明与文献中的现有方法相比,这种方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信