Recovering Multi-frame Incomplete Path Tracing Images Using Tensor Completion

Ping Liu, Hangyu Ji
{"title":"Recovering Multi-frame Incomplete Path Tracing Images Using Tensor Completion","authors":"Ping Liu, Hangyu Ji","doi":"10.1109/ICCS56273.2022.9988436","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to recover missing pixels in multi-frame incomplete path tracing images using tensor completion. Matrix completion and compressed sensing provide screen space solutions to recover missing pixels from sparsely rendered path tracing images, providing efficient previsualization. Path tracing is often used to generate an animated sequence of images, which then requires an efficient previsualization that is coherent across multiple frames to avoid temporal noise in the final video. We present a novel numerical method to construct a tensor structure using multiple path tracing images followed by tensor completion, which coherently recovers missing pixels avoiding temporal noise. Our numerical method avoids complex procedures when building a low rank tensor for tensor completion, which previously required complex initialization and similar patch finding steps across nearby frames. Our method shows promising results and outperforms recent matrix completion based methods in both visual quality and performance.","PeriodicalId":382726,"journal":{"name":"2022 IEEE 2nd International Conference on Computer Systems (ICCS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Computer Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS56273.2022.9988436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel method to recover missing pixels in multi-frame incomplete path tracing images using tensor completion. Matrix completion and compressed sensing provide screen space solutions to recover missing pixels from sparsely rendered path tracing images, providing efficient previsualization. Path tracing is often used to generate an animated sequence of images, which then requires an efficient previsualization that is coherent across multiple frames to avoid temporal noise in the final video. We present a novel numerical method to construct a tensor structure using multiple path tracing images followed by tensor completion, which coherently recovers missing pixels avoiding temporal noise. Our numerical method avoids complex procedures when building a low rank tensor for tensor completion, which previously required complex initialization and similar patch finding steps across nearby frames. Our method shows promising results and outperforms recent matrix completion based methods in both visual quality and performance.
利用张量补全恢复多帧不完整路径跟踪图像
提出了一种基于张量补全的多帧不完整路径跟踪图像缺失像素恢复方法。矩阵补全和压缩感知提供了屏幕空间解决方案,以从稀疏渲染的路径跟踪图像中恢复缺失的像素,提供有效的预可视化。路径跟踪通常用于生成动画图像序列,然后需要在多个帧之间进行有效的预可视化,以避免最终视频中的时间噪声。本文提出了一种利用多路径跟踪图像并进行张量补全来构造张量结构的新方法,该方法可以相干地恢复缺失的像素,避免了时间噪声。我们的数值方法在为张量补全构建低秩张量时避免了复杂的过程,这在以前需要复杂的初始化和类似的补丁查找步骤。我们的方法显示了很好的结果,并且在视觉质量和性能上都优于最近基于矩阵补全的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信