NUcache: An efficient multicore cache organization based on Next-Use distance

R. Manikantan, K. Rajan, Ramaswamy Govindarajan
{"title":"NUcache: An efficient multicore cache organization based on Next-Use distance","authors":"R. Manikantan, K. Rajan, Ramaswamy Govindarajan","doi":"10.1109/HPCA.2011.5749733","DOIUrl":null,"url":null,"abstract":"The effectiveness of the last-level shared cache is crucial to the performance of a multi-core system. In this paper, we observe and make use of the DelinquentPC — Next-Use characteristic to improve shared cache performance. We propose a new PC-centric cache organization, NUcache, for the shared last level cache of multi-cores. NUcache logically partitions the associative ways of a cache set into MainWays and DeliWays. While all lines have access to the MainWays, only lines brought in by a subset of delinquent PCs, selected by a PC selection mechanism, are allowed to enter the DeliWays. The PC selection mechanism is an intelligent cost-benefit analysis based algorithm that utilizes Next-Use information to select the set of PCs that can maximize the hits experienced in DeliWays. Performance evaluation reveals that NUcache improves the performance over a baseline design by 9.6%, 30% and 33% respectively for dual, quad and eight core workloads comprised of SPEC benchmarks. We also show that NUcache is more effective than other well-known cache-partitioning algorithms.","PeriodicalId":126976,"journal":{"name":"2011 IEEE 17th International Symposium on High Performance Computer Architecture","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 17th International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2011.5749733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

The effectiveness of the last-level shared cache is crucial to the performance of a multi-core system. In this paper, we observe and make use of the DelinquentPC — Next-Use characteristic to improve shared cache performance. We propose a new PC-centric cache organization, NUcache, for the shared last level cache of multi-cores. NUcache logically partitions the associative ways of a cache set into MainWays and DeliWays. While all lines have access to the MainWays, only lines brought in by a subset of delinquent PCs, selected by a PC selection mechanism, are allowed to enter the DeliWays. The PC selection mechanism is an intelligent cost-benefit analysis based algorithm that utilizes Next-Use information to select the set of PCs that can maximize the hits experienced in DeliWays. Performance evaluation reveals that NUcache improves the performance over a baseline design by 9.6%, 30% and 33% respectively for dual, quad and eight core workloads comprised of SPEC benchmarks. We also show that NUcache is more effective than other well-known cache-partitioning algorithms.
NUcache:基于下一次使用距离的高效多核缓存组织
最后一级共享缓存的有效性对多核系统的性能至关重要。在本文中,我们观察并利用了拖欠pc -下次使用特性来提高共享缓存性能。我们提出了一种新的以pc为中心的缓存组织,NUcache,用于多核共享的最后一级缓存。NUcache逻辑上将缓存集的关联方式划分为MainWays和DeliWays。虽然所有线路都可以访问干线,但只有由故障PC子集(由PC选择机制选择)引入的线路才允许进入DeliWays。PC选择机制是一种基于成本效益分析的智能算法,它利用Next-Use信息来选择一组PC,以最大限度地提高DeliWays的点击率。性能评估显示,在双核、四核和八核工作负载组成的SPEC基准测试中,NUcache的性能比基线设计分别提高了9.6%、30%和33%。我们还证明了NUcache比其他已知的缓存分区算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信