A Comparative Study of Classification Techniques for Knowledge-Assisted Image Analysis

G. Papadopoulos, K. Chandramouli, V. Mezaris, Y. Kompatsiaris, E. Izquierdo, M. Strintzis
{"title":"A Comparative Study of Classification Techniques for Knowledge-Assisted Image Analysis","authors":"G. Papadopoulos, K. Chandramouli, V. Mezaris, Y. Kompatsiaris, E. Izquierdo, M. Strintzis","doi":"10.1109/WIAMIS.2008.36","DOIUrl":null,"url":null,"abstract":"In this paper, four individual approaches to region classification for knowledge-assisted semantic image analysis are presented and comparatively evaluated. All of the examined approaches realize knowledge-assisted analysis via implicit knowledge acquisition, i.e. are based on machine learning techniques such as support vector machines (SVMs), self organizing maps (SOMs), genetic algorithm (GA)and particle swarm optimization (PSO). Under all examined approaches, each image is initially segmented and suitable low-level descriptors are extracted for every resulting segment. Then, each of the aforementioned classifiers is applied to associate every region with a predefined high-level semantic concept. An appropriate evaluation framework has been employed for the comparative evaluation of the above algorithms under varying experimental conditions.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, four individual approaches to region classification for knowledge-assisted semantic image analysis are presented and comparatively evaluated. All of the examined approaches realize knowledge-assisted analysis via implicit knowledge acquisition, i.e. are based on machine learning techniques such as support vector machines (SVMs), self organizing maps (SOMs), genetic algorithm (GA)and particle swarm optimization (PSO). Under all examined approaches, each image is initially segmented and suitable low-level descriptors are extracted for every resulting segment. Then, each of the aforementioned classifiers is applied to associate every region with a predefined high-level semantic concept. An appropriate evaluation framework has been employed for the comparative evaluation of the above algorithms under varying experimental conditions.
知识辅助图像分析分类技术的比较研究
本文提出了四种用于知识辅助语义图像分析的区域分类方法,并进行了比较评价。所有研究的方法都是通过隐性知识获取来实现知识辅助分析,即基于机器学习技术,如支持向量机(svm)、自组织映射(SOMs)、遗传算法(GA)和粒子群优化(PSO)。在所有检测的方法中,每个图像都被初始分割,并为每个结果片段提取合适的低级描述符。然后,应用上述每个分类器将每个区域与预定义的高级语义概念关联起来。在不同的实验条件下,采用适当的评价框架对上述算法进行了比较评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信