Texture based classification of arecanut

S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya
{"title":"Texture based classification of arecanut","authors":"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya","doi":"10.1109/ICATCCT.2015.7456971","DOIUrl":null,"url":null,"abstract":"Crop grading is one of the important stages in crop management. The different grades can be done by classification. In this paper, we propose the texture based grading of arecanut. Different texture features are extracted from arecanut by applying approaches such as Wavelet, Gabor, Local Binary Pattern (LBP), Gray Level Difference Matrix (GLDM) and Gray Level Co-Occurrence Matrix (GLCM) features. For classification Nearest Neighbor (NN) classifier is used. Experimentation conducted using a dataset of 700 images of 7 classes to demonstrate the proposed model's performance. 91.43% of classification rate is achieved with Gabor wavelet features.","PeriodicalId":276158,"journal":{"name":"2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATCCT.2015.7456971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Crop grading is one of the important stages in crop management. The different grades can be done by classification. In this paper, we propose the texture based grading of arecanut. Different texture features are extracted from arecanut by applying approaches such as Wavelet, Gabor, Local Binary Pattern (LBP), Gray Level Difference Matrix (GLDM) and Gray Level Co-Occurrence Matrix (GLCM) features. For classification Nearest Neighbor (NN) classifier is used. Experimentation conducted using a dataset of 700 images of 7 classes to demonstrate the proposed model's performance. 91.43% of classification rate is achieved with Gabor wavelet features.
基于纹理的槟榔分类
作物分级是作物经营的重要环节之一。不同的等级可以通过分类来完成。本文提出了一种基于纹理的槟榔分级方法。利用小波、Gabor、局部二值模式(LBP)、灰度差矩阵(GLDM)和灰度共生矩阵(GLCM)等特征提取槟榔的不同纹理特征。对于分类,使用最近邻(NN)分类器。实验使用7类700张图像的数据集来证明所提出的模型的性能。Gabor小波特征的分类率为91.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信