Modeling and prediction of reflectance loss in CSP plants using a non linear autoregressive model with exogenous inputs (NARX)

S. Bouaddi, Ihlal Ahmed, Omar Ait mensour
{"title":"Modeling and prediction of reflectance loss in CSP plants using a non linear autoregressive model with exogenous inputs (NARX)","authors":"S. Bouaddi, Ihlal Ahmed, Omar Ait mensour","doi":"10.1109/IRSEC.2016.7984071","DOIUrl":null,"url":null,"abstract":"Dust buildup on the surface of reflectors is a major challenge facing concentrated solar power (CSP) plants deployed in the MENA (Middle East and North Africa) region. Soiled CSP reflectors cause the efficiency of the solar field to drop. Thus, monitoring the loss of reflectance is essential to develop adequate cleaning strategies and evaluate the economics of the plants. The goal of this study is to model and predict the loss of reflectance in CSP plants. For this purpose, we modeled the loss of reflectance of second surface silvered glass mirrors exposed for 6 months in southwest Morocco using the non linear autoregressive with exogenous inputs (NARX) and Bayesian regularization. First, we adopted various architectures by varying the number of neurons in the hidden layer and adopting multiple tapped delay line. Then, we selected the optimal model based on the correlation coefficient (R) and the mean square error (MSE). The results revealed that the optimal model has 30 neurons in the hidden layer and 2 time delays, with a mean square error MSE = 0.029 and an overall Rtot= 0.62. To verify this model adequacy for the prediction of future reflectance data, we tested it on completely new data. The forecasting performance of the optimal model resulted in a mean square forecasting error of MSEƒ =0.049. Generally, the forecasted reflectance values are quite good and follow the expected soiling pattern.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7984071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Dust buildup on the surface of reflectors is a major challenge facing concentrated solar power (CSP) plants deployed in the MENA (Middle East and North Africa) region. Soiled CSP reflectors cause the efficiency of the solar field to drop. Thus, monitoring the loss of reflectance is essential to develop adequate cleaning strategies and evaluate the economics of the plants. The goal of this study is to model and predict the loss of reflectance in CSP plants. For this purpose, we modeled the loss of reflectance of second surface silvered glass mirrors exposed for 6 months in southwest Morocco using the non linear autoregressive with exogenous inputs (NARX) and Bayesian regularization. First, we adopted various architectures by varying the number of neurons in the hidden layer and adopting multiple tapped delay line. Then, we selected the optimal model based on the correlation coefficient (R) and the mean square error (MSE). The results revealed that the optimal model has 30 neurons in the hidden layer and 2 time delays, with a mean square error MSE = 0.029 and an overall Rtot= 0.62. To verify this model adequacy for the prediction of future reflectance data, we tested it on completely new data. The forecasting performance of the optimal model resulted in a mean square forecasting error of MSEƒ =0.049. Generally, the forecasted reflectance values are quite good and follow the expected soiling pattern.
基于外源输入非线性自回归模型(NARX)的CSP电站反射损失建模与预测
在中东和北非地区部署的聚光太阳能发电厂(CSP)面临的主要挑战是反射器表面的灰尘积聚。受污染的CSP反射器会导致太阳能场的效率下降。因此,监测反射损失对于制定适当的清洁策略和评估工厂的经济效益至关重要。本研究的目的是模拟和预测CSP工厂的反射率损失。为此,我们使用带有外源输入的非线性自回归(NARX)和贝叶斯正则化方法,对摩洛哥西南部暴露6个月的第二表面镀银玻璃镜面的反射率损失进行了建模。首先,我们通过改变隐藏层神经元的数量和采用多抽头延迟线来采用多种架构。然后,根据相关系数(R)和均方误差(MSE)选择最优模型。结果表明,最优模型隐含层有30个神经元,时滞2个,均方误差MSE = 0.029,总体Rtot= 0.62。为了验证该模型是否足以预测未来的反射率数据,我们在全新的数据上进行了测试。最优模型的预测性能使预测均方误差msef =0.049。一般来说,预测的反射率值相当好,并符合预期的污染模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信