MRAM-based BER resilient Quantized edge-AI Networks for Harsh Industrial Conditions

V. Parmar, M. Suri, K. Yamane, T. Lee, Nyuk Leong Chung, V. B. Naik
{"title":"MRAM-based BER resilient Quantized edge-AI Networks for Harsh Industrial Conditions","authors":"V. Parmar, M. Suri, K. Yamane, T. Lee, Nyuk Leong Chung, V. B. Naik","doi":"10.1109/AICAS51828.2021.9458528","DOIUrl":null,"url":null,"abstract":"We investigate Edge-AI Inference (EAI) architectures based on 22nm FD-SOI embedded-MRAM (eMRAM) using quantized neural networks (QNN) for inference applications in harsh industrial conditions having strong magnetic field and wide operating temperature (-40∼125 °C). We achieved best case test accuracy of 98.99% with Quantized-Convolutional Neural Network (QCNN) and 89.94% with Quantized-Multi-layer Perceptron (QMLP) surpassing prior reported results in literature on MNIST dataset. By exploiting BER resilience of QNN, we show that eMRAM based EAI offers a superior magnetic immunity of ≈ 700 Oe at 125 °C (≈ 98% accuracy) without the use of ECC and significant energy saving of ≈ 14% for QCNN and ≈ 11% for QMLP. A detailed analysis on the tradeoff between retention time, write energy and inference accuracy is presented.","PeriodicalId":173204,"journal":{"name":"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS51828.2021.9458528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate Edge-AI Inference (EAI) architectures based on 22nm FD-SOI embedded-MRAM (eMRAM) using quantized neural networks (QNN) for inference applications in harsh industrial conditions having strong magnetic field and wide operating temperature (-40∼125 °C). We achieved best case test accuracy of 98.99% with Quantized-Convolutional Neural Network (QCNN) and 89.94% with Quantized-Multi-layer Perceptron (QMLP) surpassing prior reported results in literature on MNIST dataset. By exploiting BER resilience of QNN, we show that eMRAM based EAI offers a superior magnetic immunity of ≈ 700 Oe at 125 °C (≈ 98% accuracy) without the use of ECC and significant energy saving of ≈ 14% for QCNN and ≈ 11% for QMLP. A detailed analysis on the tradeoff between retention time, write energy and inference accuracy is presented.
苛刻工业条件下基于mram的BER弹性量化边缘人工智能网络
我们研究了基于22nm FD-SOI嵌入式mram (eMRAM)的边缘ai推理(EAI)架构,使用量化神经网络(QNN)在具有强磁场和宽工作温度(-40 ~ 125°C)的恶劣工业条件下进行推理应用。量化卷积神经网络(QCNN)和量化多层感知器(QMLP)的最佳案例测试准确率分别达到98.99%和89.94%,超过了MNIST数据集上文献报道的结果。通过利用QNN的误码弹性,我们发现基于eMRAM的EAI在125°C下提供了≈700 Oe(≈98%的精度)的优越磁抗扰度,而不使用ECC, QCNN和QMLP分别节省了≈14%和≈11%的能量。详细分析了保留时间、写入能量和推理精度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信