M. Prasad, Kuang-Pen Chou, A. Saxena, Omprakash Kaiwartya, Dong-Lin Li, Chin-Teng Lin
{"title":"Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centers","authors":"M. Prasad, Kuang-Pen Chou, A. Saxena, Omprakash Kaiwartya, Dong-Lin Li, Chin-Teng Lin","doi":"10.1109/CICA.2014.7013227","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a novel model for Mamdani type fuzzy inference system by using the knowledge learning ability of collaborative fuzzy clustering and rule learning capability of FCM. The collaboration process finds consistency between different datasets, these datasets can be generated at various places or same place with diverse environment containing common features space and bring together to find common features within them. For any kind of collaboration or integration of datasets, there is a need of keeping privacy and security at some level. By using collaboration process, it helps fuzzy inference system to define the accurate numbers of rules for structure learning and keeps the performance of system at satisfactory level while preserving the privacy and security of given datasets.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper demonstrates a novel model for Mamdani type fuzzy inference system by using the knowledge learning ability of collaborative fuzzy clustering and rule learning capability of FCM. The collaboration process finds consistency between different datasets, these datasets can be generated at various places or same place with diverse environment containing common features space and bring together to find common features within them. For any kind of collaboration or integration of datasets, there is a need of keeping privacy and security at some level. By using collaboration process, it helps fuzzy inference system to define the accurate numbers of rules for structure learning and keeps the performance of system at satisfactory level while preserving the privacy and security of given datasets.