Shengfeng Zhou, Yazhini C. Pradeep, Peter C. Y. Chen
{"title":"Simultaneous base and end-effector motion control of a nonholonomic mobile manipulator","authors":"Shengfeng Zhou, Yazhini C. Pradeep, Peter C. Y. Chen","doi":"10.1109/ICARA.2015.7081138","DOIUrl":null,"url":null,"abstract":"This paper investigates the motion control for a nonholonomic mobile manipulator with the objective of simultaneously controlling the velocity of the mobile base and the motion of the end-effector. Both the reference velocity for the mobile base and the reference trajectory for the end-effector are specified in the task-space. A steering velocity is designed based on the steering system of the mobile base via dynamic feedback linearization, with the advantage of directly using the reference velocity set in task-space. A torque controller is subsequently designed via backstepping based on the dynamics of the mobile manipulator to ensure that the mobile base tracks the designed steering velocity and the end-effector tracks the reference trajectory. The asymptotic stability of both the velocity tracking error and the end-effector motion tracking error is achieved. Simulations are conducted to demonstrate the effectiveness of the proposed controller.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper investigates the motion control for a nonholonomic mobile manipulator with the objective of simultaneously controlling the velocity of the mobile base and the motion of the end-effector. Both the reference velocity for the mobile base and the reference trajectory for the end-effector are specified in the task-space. A steering velocity is designed based on the steering system of the mobile base via dynamic feedback linearization, with the advantage of directly using the reference velocity set in task-space. A torque controller is subsequently designed via backstepping based on the dynamics of the mobile manipulator to ensure that the mobile base tracks the designed steering velocity and the end-effector tracks the reference trajectory. The asymptotic stability of both the velocity tracking error and the end-effector motion tracking error is achieved. Simulations are conducted to demonstrate the effectiveness of the proposed controller.