A Visual Interface for Feature Subset Selection Using Machine Learning Methods

Diego Rojo, Laura Raya, M. Rubio-Sánchez, Alberto Sánchez
{"title":"A Visual Interface for Feature Subset Selection Using Machine Learning Methods","authors":"Diego Rojo, Laura Raya, M. Rubio-Sánchez, Alberto Sánchez","doi":"10.2312/CEIG.20181165","DOIUrl":null,"url":null,"abstract":"Visual representation of information remains a key part of exploratory data analysis. This is due to the high number of features in datasets and their increasing complexity, together with users’ ability to visually understand information. One of the most common operations in exploratory data analysis is the selection of relevant features in the available data. In multidimensional scenarios, this task is often done with the help of automatic dimensionality reduction algorithms from the machine learning field. In this paper we develop a visual interface where users are integrated into the feature selection process of several machine learning algorithms. Users can work interactively with the algorithms in order to explore the data, compare the results and make the appropriate decisions about the feature selection process. CCS Concepts •Human-centered computing → Visual analytics; Visualization systems and tools; •Computing methodologies → Feature selection;","PeriodicalId":385751,"journal":{"name":"Spanish Computer Graphics Conference","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Computer Graphics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/CEIG.20181165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visual representation of information remains a key part of exploratory data analysis. This is due to the high number of features in datasets and their increasing complexity, together with users’ ability to visually understand information. One of the most common operations in exploratory data analysis is the selection of relevant features in the available data. In multidimensional scenarios, this task is often done with the help of automatic dimensionality reduction algorithms from the machine learning field. In this paper we develop a visual interface where users are integrated into the feature selection process of several machine learning algorithms. Users can work interactively with the algorithms in order to explore the data, compare the results and make the appropriate decisions about the feature selection process. CCS Concepts •Human-centered computing → Visual analytics; Visualization systems and tools; •Computing methodologies → Feature selection;
基于机器学习方法的特征子集选择可视化界面
信息的可视化表示仍然是探索性数据分析的关键部分。这是由于数据集中的大量特征及其日益增加的复杂性,以及用户从视觉上理解信息的能力。探索性数据分析中最常见的操作之一是在可用数据中选择相关特征。在多维场景中,这项任务通常借助机器学习领域的自动降维算法来完成。在本文中,我们开发了一个可视化界面,将用户集成到几种机器学习算法的特征选择过程中。用户可以与算法交互工作,以便探索数据,比较结果并对特征选择过程做出适当的决定。CCS概念•以人为中心的计算→可视化分析;可视化系统和工具;•计算方法→特征选择;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信