Neural Network Aided Kalman Filter to Maximize Accuracy

Varun Niraj Agarwal, Avaneesh Kanshi, N. Melarkode, Hemanth Krishna, M. Hota
{"title":"Neural Network Aided Kalman Filter to Maximize Accuracy","authors":"Varun Niraj Agarwal, Avaneesh Kanshi, N. Melarkode, Hemanth Krishna, M. Hota","doi":"10.1109/ICONAT53423.2022.9726059","DOIUrl":null,"url":null,"abstract":"With the growing need for data, and ever-growing demand for prediction and error-correction, Kalman Filters are undoubtedly at the forefronts of real-time estimation. While these filters are designed to achieve convergence shortly after getting exposed to the data, the filters might not be able to maximize all the data it can extract from the system. In order to extract most of the information that is otherwise unusable by the Kalman Factor, an initial assumption of a pre-trained Machine Learning model that correlates a feedable parameter with the unusable data is made. The feedable parameter is then given to the Kalman Filter along with the other standard parameters which boosts the accuracy by adding another dimension to the filter.","PeriodicalId":377501,"journal":{"name":"2022 International Conference for Advancement in Technology (ICONAT)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT53423.2022.9726059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing need for data, and ever-growing demand for prediction and error-correction, Kalman Filters are undoubtedly at the forefronts of real-time estimation. While these filters are designed to achieve convergence shortly after getting exposed to the data, the filters might not be able to maximize all the data it can extract from the system. In order to extract most of the information that is otherwise unusable by the Kalman Factor, an initial assumption of a pre-trained Machine Learning model that correlates a feedable parameter with the unusable data is made. The feedable parameter is then given to the Kalman Filter along with the other standard parameters which boosts the accuracy by adding another dimension to the filter.
神经网络辅助卡尔曼滤波,最大限度地提高精度
随着对数据需求的不断增长,以及对预测和纠错的需求不断增长,卡尔曼滤波器无疑处于实时估计的前沿。虽然这些过滤器的设计目的是在暴露于数据后不久实现收敛,但过滤器可能无法最大化它可以从系统中提取的所有数据。为了提取卡尔曼因子无法使用的大部分信息,需要对预训练的机器学习模型进行初始假设,该模型将可馈送参数与不可用数据关联起来。然后将可馈参数与其他标准参数一起提供给卡尔曼滤波器,通过增加滤波器的另一个维度来提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信