Pedestrian Tracking and Navigation Using Neural Networks and Fuzzy Logic

C. Toth, D. Grejner-Brzezinska, S. Moafipoor
{"title":"Pedestrian Tracking and Navigation Using Neural Networks and Fuzzy Logic","authors":"C. Toth, D. Grejner-Brzezinska, S. Moafipoor","doi":"10.1109/WISP.2007.4447525","DOIUrl":null,"url":null,"abstract":"The main goal of the research presented here is to develop theoretical foundations and implementation algorithms, which integrate GPS, micro-electro-mechanical inertial measurement unit (MEMS IMU), digital barometer, electronic compass, and human pedometry to provide navigation and tracking of military and rescue ground personnel. This paper discusses the design, implementation and the initial performance analyses of the personal navigator prototype1, with a special emphasis on dead-reckoning (DR) navigation supported by the human locomotion model. To facilitate this functionality, the adaptive knowledge system, based on the Artificial Neural Networks (ANN) and Fuzzy Logic, is trained during the GPS signal reception and used to maintain navigation under GPS-denied conditions. The human locomotion parameters, step frequency (SF) and step length (SL) are estimated during the system calibration period, then the predicted SL, together with the heading information from the compass and gyro, support DR navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable) 50%.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The main goal of the research presented here is to develop theoretical foundations and implementation algorithms, which integrate GPS, micro-electro-mechanical inertial measurement unit (MEMS IMU), digital barometer, electronic compass, and human pedometry to provide navigation and tracking of military and rescue ground personnel. This paper discusses the design, implementation and the initial performance analyses of the personal navigator prototype1, with a special emphasis on dead-reckoning (DR) navigation supported by the human locomotion model. To facilitate this functionality, the adaptive knowledge system, based on the Artificial Neural Networks (ANN) and Fuzzy Logic, is trained during the GPS signal reception and used to maintain navigation under GPS-denied conditions. The human locomotion parameters, step frequency (SF) and step length (SL) are estimated during the system calibration period, then the predicted SL, together with the heading information from the compass and gyro, support DR navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable) 50%.
基于神经网络和模糊逻辑的行人跟踪与导航
本研究的主要目标是建立理论基础和实现算法,将GPS、微机电惯性测量单元(MEMS IMU)、数字气压计、电子罗盘和人体计步器集成在一起,为军事和救援地面人员提供导航和跟踪。本文讨论了个人导航仪原型的设计、实现和初步性能分析,重点讨论了人体运动模型支持的航位推算(DR)导航。为了实现这一功能,在GPS信号接收过程中对基于人工神经网络(ANN)和模糊逻辑的自适应知识系统进行训练,并用于在GPS拒绝条件下保持导航。在系统标定期间估计人体运动参数、步进频率(SF)和步长(SL),然后预测的步长与罗盘和陀螺仪的航向信息一起支持DR导航。目前系统的目标精度为3-5米CEP(圆周误差概率)50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信