{"title":"Comparison of low-cost GPS/INS sensors for Autonomous Vehicle applications","authors":"G. Elkaim, Mariano I. Lizárraga, L. Pederseny","doi":"10.1109/PLANS.2008.4570000","DOIUrl":null,"url":null,"abstract":"Autonomous Vehicle applications (Unmanned Ground Vehicles, Micro-Air Vehicles, UAVpsilas, and Marine Surface Vehicles) all require accurate position and attitude to be effective. Commercial units range in both cost and accuracy, as well as power, size, and weight. With the advent of low-cost blended GPS/INS solutions, several new options are available to accomplish the positioning task. In this work, we experimentally compare three commercially available, off-the-shelf units insitu, in terms of both position, and attitude. The compared units are a Microbotics MIDG-II, a Tokimec VSAS-2GM, along with a KVH Fiber Optic Gyro. The position truth measure is from a Trimble Ag122 DGPS receiver, and the attitude truth is from the KVH in yaw. Care is taken to make sure that all measurements are taken simultaneously, and that the sensors are all mounted rigidly to the vehicle chassis. A series of measurement trials are performed, including light driving on coastal roads and highway speeds, static bench testing, and flight data taken in a light aircraft both flying up the coast as well as aggressively maneuvering. Allan Variance analysis performed on all of the sensors, and their noise characteristics are compared directly. A table is included with the final consistent models for these sensors, and a methodology for creating such models for any additional sensors as they are made available. The Microbotics MIDG-II demonstrates performance that is superior to the Tokimec VSAS-2GM, both in terms of raw positioning data, as well as attitude data. While both perform quite well during flight, the MIDG is much better during driving tests. This is due to the MIDG internal tightly-coupled architecture, which is able to better fuse the GPS information with the noisy inertial sensor measurements.","PeriodicalId":446381,"journal":{"name":"2008 IEEE/ION Position, Location and Navigation Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2008.4570000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Autonomous Vehicle applications (Unmanned Ground Vehicles, Micro-Air Vehicles, UAVpsilas, and Marine Surface Vehicles) all require accurate position and attitude to be effective. Commercial units range in both cost and accuracy, as well as power, size, and weight. With the advent of low-cost blended GPS/INS solutions, several new options are available to accomplish the positioning task. In this work, we experimentally compare three commercially available, off-the-shelf units insitu, in terms of both position, and attitude. The compared units are a Microbotics MIDG-II, a Tokimec VSAS-2GM, along with a KVH Fiber Optic Gyro. The position truth measure is from a Trimble Ag122 DGPS receiver, and the attitude truth is from the KVH in yaw. Care is taken to make sure that all measurements are taken simultaneously, and that the sensors are all mounted rigidly to the vehicle chassis. A series of measurement trials are performed, including light driving on coastal roads and highway speeds, static bench testing, and flight data taken in a light aircraft both flying up the coast as well as aggressively maneuvering. Allan Variance analysis performed on all of the sensors, and their noise characteristics are compared directly. A table is included with the final consistent models for these sensors, and a methodology for creating such models for any additional sensors as they are made available. The Microbotics MIDG-II demonstrates performance that is superior to the Tokimec VSAS-2GM, both in terms of raw positioning data, as well as attitude data. While both perform quite well during flight, the MIDG is much better during driving tests. This is due to the MIDG internal tightly-coupled architecture, which is able to better fuse the GPS information with the noisy inertial sensor measurements.