ANALISIS SENTIMEN MENGGUNAKAN ARSITEKTUR LONG SHORT-TERM MEMORY (LSTM) TERHADAP FENOMENA CITAYAM FASHION WEEK

Laina Farsiah, Alim Misbullah, H. Husaini
{"title":"ANALISIS SENTIMEN MENGGUNAKAN ARSITEKTUR LONG SHORT-TERM MEMORY (LSTM) TERHADAP FENOMENA CITAYAM FASHION WEEK","authors":"Laina Farsiah, Alim Misbullah, H. Husaini","doi":"10.22373/cj.v6i2.14687","DOIUrl":null,"url":null,"abstract":"Sentiment analysis of the text aims to recognize whether a text contains positive, negative, or neutral emotions. The results of the analysis can be used as a tool for making decisions on an issue. Recently, the Citayam Fashion Week event become an issue that is extremely debated in Indonesia, especially in July 2022 on social media. The issue has motivated us to do sentiment analysis for better making decisions. In our work, the dataset is collected from Indonesian people's tweets with the keywords Citayam Fashion Week. Furthermore, each tweet will be labeled with a positive, negative, or neutral class based on the Indonesian lexical. This research produces a model based on Long Short Term Memory (LSTM) structure to predict every Indonesian tweet into the category of positive, negative, or neutral sentiment related to public views and opinions about the Citayam Fashion Week phenomenon. The model accuracy shows that the LSTM obtained good performance which is 88%.","PeriodicalId":283432,"journal":{"name":"Cyberspace: Jurnal Pendidikan Teknologi Informasi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyberspace: Jurnal Pendidikan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22373/cj.v6i2.14687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment analysis of the text aims to recognize whether a text contains positive, negative, or neutral emotions. The results of the analysis can be used as a tool for making decisions on an issue. Recently, the Citayam Fashion Week event become an issue that is extremely debated in Indonesia, especially in July 2022 on social media. The issue has motivated us to do sentiment analysis for better making decisions. In our work, the dataset is collected from Indonesian people's tweets with the keywords Citayam Fashion Week. Furthermore, each tweet will be labeled with a positive, negative, or neutral class based on the Indonesian lexical. This research produces a model based on Long Short Term Memory (LSTM) structure to predict every Indonesian tweet into the category of positive, negative, or neutral sentiment related to public views and opinions about the Citayam Fashion Week phenomenon. The model accuracy shows that the LSTM obtained good performance which is 88%.
对时装周学现象的长期短期记忆分析
文本情感分析的目的是识别文本是否包含积极、消极或中性的情绪。分析的结果可以用作对某一问题作出决策的工具。最近,Citayam时装周活动在印度尼西亚成为一个极具争议的问题,特别是在2022年7月的社交媒体上。这个问题促使我们进行情感分析,以便更好地做出决策。在我们的工作中,数据集是从印度尼西亚人的推特中收集的,关键词是Citayam时装周。此外,每个tweet将根据印尼语词汇标记为积极、消极或中性类。本研究建立了一个基于长短期记忆(LSTM)结构的模型,以预测每一条印尼推文的正面、负面或中性情绪,这些情绪与公众对Citayam时装周现象的看法和意见有关。模型精度表明,LSTM获得了良好的性能,达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信