On Polynomial Ideals and Overconvergence in Tate Algebras

X. Caruso, Tristan Vaccon, Thibaut Verron
{"title":"On Polynomial Ideals and Overconvergence in Tate Algebras","authors":"X. Caruso, Tristan Vaccon, Thibaut Verron","doi":"10.1145/3476446.3535491","DOIUrl":null,"url":null,"abstract":"In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gröbner bases, even if the input is polynomials, the size of the output grows with the required precision, both in terms of the size of the coefficients and the size of the support of the series. We prove that ideals which are spanned by polynomials admit a Tate Gröbner basis made of polynomials, and we propose an algorithm, leveraging Mora's weak normal form algorithm, for computing it. As a result, the size of the output of this algorithm grows linearly with the precision. Following the same ideas, we propose an algorithm which computes an overconvergent basis for an ideal spanned by overconvergent series. Finally, we prove the existence of a universal analytic Gröbner basis for polynomial ideals in Tate algebras, compatible with all convergence radii.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gröbner bases, even if the input is polynomials, the size of the output grows with the required precision, both in terms of the size of the coefficients and the size of the support of the series. We prove that ideals which are spanned by polynomials admit a Tate Gröbner basis made of polynomials, and we propose an algorithm, leveraging Mora's weak normal form algorithm, for computing it. As a result, the size of the output of this algorithm grows linearly with the precision. Following the same ideas, we propose an algorithm which computes an overconvergent basis for an ideal spanned by overconvergent series. Finally, we prove the existence of a universal analytic Gröbner basis for polynomial ideals in Tate algebras, compatible with all convergence radii.
关于Tate代数的多项式理想与过收敛性
本文研究了一类Tate代数中多项式或过收敛级数张成的理想。使用最先进的计算Tate Gröbner基的算法,即使输入是多项式,输出的大小也会随着所需的精度而增长,无论是在系数的大小还是级数的支持大小方面。我们证明了由多项式张成的理想承认由多项式构成的Tate Gröbner基,并提出了一种利用Mora的弱范式算法来计算它的算法。因此,该算法的输出大小随精度线性增长。根据同样的思想,我们提出了一种计算由过收敛级数张成的理想的过收敛基的算法。最后,我们证明了Tate代数中多项式理想的一个与所有收敛半径相容的泛解析基Gröbner的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信