A collocation-based approach to solve the finite horizon Hamilton-Jacobi-Bellman equation

Michael Mercurio, Nagavenkat Adurthi, P. Singla, M. Majji
{"title":"A collocation-based approach to solve the finite horizon Hamilton-Jacobi-Bellman equation","authors":"Michael Mercurio, Nagavenkat Adurthi, P. Singla, M. Majji","doi":"10.1109/ACC.2016.7525430","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to derive the optimal feedback control laws by solving the finite time Hamilton Jacobi Ballman equation. Conventional methods to solve the HJB equation suffer from curse of dimensionality as the number of spatial variables is equal to the state dimension, which is twice the number of degrees of freedom of a mechanical system. The presented approach exploits the recently developed non-product quadrature method known as Conjugate Unscented Transformation (CUT) in conjunction with sparse approximation tools to devise a collocation method to solve the HJB equation in a computationally efficient manner. Numerical simulation results are presented to assess the efficacy of the proposed ideas.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an approach to derive the optimal feedback control laws by solving the finite time Hamilton Jacobi Ballman equation. Conventional methods to solve the HJB equation suffer from curse of dimensionality as the number of spatial variables is equal to the state dimension, which is twice the number of degrees of freedom of a mechanical system. The presented approach exploits the recently developed non-product quadrature method known as Conjugate Unscented Transformation (CUT) in conjunction with sparse approximation tools to devise a collocation method to solve the HJB equation in a computationally efficient manner. Numerical simulation results are presented to assess the efficacy of the proposed ideas.
基于配位的有限视界Hamilton-Jacobi-Bellman方程求解方法
本文提出了一种通过求解有限时间Hamilton Jacobi Ballman方程推导最优反馈控制律的方法。传统的求解HJB方程的方法由于空间变量的数量等于状态维数,而状态维数是机械系统自由度的两倍,因此存在维数诅咒的问题。提出的方法利用了最近发展的非乘积正交法,即共轭无气味变换(CUT),结合稀疏逼近工具,设计了一种配置方法,以计算效率高的方式求解HJB方程。最后给出了数值模拟结果来评估所提思想的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信