Real-Time Scheduling with Predictions

Tianming Zhao, Wei Li, Albert Y. Zomaya
{"title":"Real-Time Scheduling with Predictions","authors":"Tianming Zhao, Wei Li, Albert Y. Zomaya","doi":"10.1109/RTSS55097.2022.00036","DOIUrl":null,"url":null,"abstract":"The recent revival in learning theory gives us improved capabilities for accurate predictions and increased opportunities for performance enhancement. This work extends the research agenda of augmenting algorithms with predictions to one of the central scheduling problems – soft real-time scheduling on single and parallel machines to minimize the mean response time. We design an algorithm, PEDRMLF (Predictions Enhanced Dynamic Randomized MultiLevel Feedback), that incorporates job size predictions, achieving an optimal competitive ratio under perfect predictions and the best-known competitive ratio under any predictions. PEDRMLF is the first algorithm that simultaneously achieves optimal consistency and bounded robustness. Simulations show that the proposed algorithm performs close to the theoretically optimal bound while consistently outperforming state-of-the-art benchmarks.","PeriodicalId":202402,"journal":{"name":"2022 IEEE Real-Time Systems Symposium (RTSS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS55097.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The recent revival in learning theory gives us improved capabilities for accurate predictions and increased opportunities for performance enhancement. This work extends the research agenda of augmenting algorithms with predictions to one of the central scheduling problems – soft real-time scheduling on single and parallel machines to minimize the mean response time. We design an algorithm, PEDRMLF (Predictions Enhanced Dynamic Randomized MultiLevel Feedback), that incorporates job size predictions, achieving an optimal competitive ratio under perfect predictions and the best-known competitive ratio under any predictions. PEDRMLF is the first algorithm that simultaneously achieves optimal consistency and bounded robustness. Simulations show that the proposed algorithm performs close to the theoretically optimal bound while consistently outperforming state-of-the-art benchmarks.
带预测的实时调度
最近学习理论的复兴提高了我们准确预测的能力,并增加了提高表现的机会。本工作将带预测的增强算法的研究议程扩展到中心调度问题之一-单机和并行机的软实时调度,以最小化平均响应时间。我们设计了一种算法,PEDRMLF(预测增强动态随机多级反馈),它结合了作业大小预测,在完美预测下获得最佳竞争比,在任何预测下获得最知名的竞争比。PEDRMLF是第一个同时实现最优一致性和有界鲁棒性的算法。仿真表明,所提出的算法执行接近理论最优边界,同时始终优于最先进的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信