Hyperspectral Salient Object Detection Using Extended Morphology with CNN

Koushikey Chhapariya, K. Buddhiraju, Adarsh Kumar
{"title":"Hyperspectral Salient Object Detection Using Extended Morphology with CNN","authors":"Koushikey Chhapariya, K. Buddhiraju, Adarsh Kumar","doi":"10.1109/IGARSS46834.2022.9883107","DOIUrl":null,"url":null,"abstract":"Salient object detection using hyperspectral images is crucial for various image processing and computer vision applications. Many studies considering spectral information have been developed, extracting only low-level features from a hy-perspectral image. In this research work, a dataset specifically developed for salient object detection called HS-SOD is considered exploiting both spatial and spectral information equally. To include spatial information, Extended Morpho-logical Profile (EMP) has been considered. EMP incorpo-rates spatial characteristics by including nearby pixel information. A convolution neural network (CNN) is integrated with extended morphology to extract high-level features. It detect objects of multiple spatial scales and ratios, preserving boundary edges. We observed an improvement of 5 % in overall accuracy while using EMP with CNN compared to that of using EMP without CNN. Thus, the experimental re-sults demonstrate the effectiveness of EMP with CNN on the hyperspectral datasets.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Salient object detection using hyperspectral images is crucial for various image processing and computer vision applications. Many studies considering spectral information have been developed, extracting only low-level features from a hy-perspectral image. In this research work, a dataset specifically developed for salient object detection called HS-SOD is considered exploiting both spatial and spectral information equally. To include spatial information, Extended Morpho-logical Profile (EMP) has been considered. EMP incorpo-rates spatial characteristics by including nearby pixel information. A convolution neural network (CNN) is integrated with extended morphology to extract high-level features. It detect objects of multiple spatial scales and ratios, preserving boundary edges. We observed an improvement of 5 % in overall accuracy while using EMP with CNN compared to that of using EMP without CNN. Thus, the experimental re-sults demonstrate the effectiveness of EMP with CNN on the hyperspectral datasets.
基于CNN扩展形态学的高光谱显著目标检测
利用高光谱图像检测显著目标对于各种图像处理和计算机视觉应用至关重要。许多考虑光谱信息的研究已经发展起来,仅从高光谱图像中提取低水平特征。在这项研究工作中,一个专门为显著目标检测开发的名为HS-SOD的数据集被认为同时利用了空间和光谱信息。为了包含空间信息,我们考虑了扩展形态剖面(EMP)。EMP通过包含附近的像素信息来结合空间特征。将卷积神经网络(CNN)与扩展形态学相结合,提取高级特征。它可以检测多个空间尺度和比例的物体,并保持边界边缘。我们观察到,与不使用CNN的EMP相比,使用EMP和CNN的总体准确率提高了5%。因此,实验结果证明了EMP与CNN在高光谱数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信