Existence and Continuous Dependence of the Local Solution of Non Homogeneous Third Order Equation and Generalizations

Y. S. Ayala
{"title":"Existence and Continuous Dependence of the Local Solution of Non Homogeneous Third Order Equation and Generalizations","authors":"Y. S. Ayala","doi":"10.14738/tmlai.105.13171","DOIUrl":null,"url":null,"abstract":"\n \n \nIn this article, we prove that initial value problem associated to the non homogeneous third order equation in periodic Sobolev spaces has a local so- lution in [0, T ] with T > 0, and the solution has continuous dependence with respect to the initial data and the non homogeneous part of the problem. We do this in a intuitive way using Fourier theory and introducing a Co - Semi- group inspired by the work of Iorio [1] and Santiago [6]. Also, we prove the uniqueness solution of the homogeneous third order equa- tion, using its conservative property, inspired by the work of Iorio [1] and Santiago [7]. Finally, we study its generalization to n-th order equation. \n \n \n","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.105.13171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we prove that initial value problem associated to the non homogeneous third order equation in periodic Sobolev spaces has a local so- lution in [0, T ] with T > 0, and the solution has continuous dependence with respect to the initial data and the non homogeneous part of the problem. We do this in a intuitive way using Fourier theory and introducing a Co - Semi- group inspired by the work of Iorio [1] and Santiago [6]. Also, we prove the uniqueness solution of the homogeneous third order equa- tion, using its conservative property, inspired by the work of Iorio [1] and Santiago [7]. Finally, we study its generalization to n-th order equation.
非齐次三阶方程局部解的存在性、连续依赖性及推广
本文证明了周期Sobolev空间中非齐次三阶方程初值问题在[0,T]中有一个局部解,且解对初值数据和问题的非齐次部分具有连续依赖关系。我们使用傅里叶理论以直观的方式做到这一点,并引入了受Iorio[1]和Santiago[6]工作启发的Co -半群。在Iorio[1]和Santiago[7]的工作的启发下,利用三阶齐次方程的保守性,证明了它的唯一性解。最后,我们研究了它在n阶方程中的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信