FIF: A NLP-based Feature Identification Framework for Data Warehouses

A. Prabhune, Ashish Chouhan
{"title":"FIF: A NLP-based Feature Identification Framework for Data Warehouses","authors":"A. Prabhune, Ashish Chouhan","doi":"10.1145/3350546.3352530","DOIUrl":null,"url":null,"abstract":"In a data warehouse, selecting the relevant features is an iterative process that is laborious, time-consuming, and error-prone due to selection bias introduced by either the data expert or the data-analyst. In order to address this challenge, this paper introduces FIF, a Feature Identification Framework that uses Natural Language Processing (NLP) to analyze the hypotheses, identify the relevant feature space and predict the appropriate data mining task and model. The FIF is designed on the principles of microservices architecture pattern, comprising of five core groups of microservices: (a) NLP Pre-processor, (b) Attribute Identifier, (c) Feature Identifier, (d) Topic Modeller, and (e) Data Mining Task Evaluator. Finally, FIF is evaluated with five hypotheses against our data warehouse. CCS CONCEPTS • Information systems → Data warehouses; Wrappers (data mining); Document topic models; Similarity measures; • Computing methodologies → Feature selection; Natural language processing.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a data warehouse, selecting the relevant features is an iterative process that is laborious, time-consuming, and error-prone due to selection bias introduced by either the data expert or the data-analyst. In order to address this challenge, this paper introduces FIF, a Feature Identification Framework that uses Natural Language Processing (NLP) to analyze the hypotheses, identify the relevant feature space and predict the appropriate data mining task and model. The FIF is designed on the principles of microservices architecture pattern, comprising of five core groups of microservices: (a) NLP Pre-processor, (b) Attribute Identifier, (c) Feature Identifier, (d) Topic Modeller, and (e) Data Mining Task Evaluator. Finally, FIF is evaluated with five hypotheses against our data warehouse. CCS CONCEPTS • Information systems → Data warehouses; Wrappers (data mining); Document topic models; Similarity measures; • Computing methodologies → Feature selection; Natural language processing.
基于nlp的数据仓库特征识别框架
在数据仓库中,选择相关特性是一个反复的过程,由于数据专家或数据分析师引入的选择偏差,这个过程既费力又耗时,而且容易出错。为了解决这一挑战,本文引入了FIF,一种使用自然语言处理(NLP)分析假设,识别相关特征空间并预测适当的数据挖掘任务和模型的特征识别框架。FIF是根据微服务架构模式的原则设计的,由五个核心微服务组组成:(a) NLP预处理,(b)属性标识符,(c)特征标识符,(d)主题建模器,(e)数据挖掘任务评估器。最后,根据我们的数据仓库,用五个假设来评估FIF。•信息系统→数据仓库;包装器(数据挖掘);文档主题模型;相似的措施;•计算方法→特征选择;自然语言处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信