Two-Point Iterative Methods for Solving Quadratic Equations and its Applications

K. Madhu
{"title":"Two-Point Iterative Methods for Solving Quadratic Equations and its Applications","authors":"K. Madhu","doi":"10.36753/MATHENOT.476799","DOIUrl":null,"url":null,"abstract":"Kung-Traub conjecture states that an iterative method without memory for locating the zero of a scalar equation could achieve convergence order 2d−1, where d is the total number of function evaluations, but proposed algorithm produces convergence order of r+2, where r is a positive integer with three function evaluations for solving quadratic equations, which is better than expected maximum convergence order. Therefore, we show that the conjecture fails for quadratic equations. Also, we extend proposed algorithm to solving systems which involving quadratic equations. We test our methods with some numerical experiments including application to one dimensional and two dimensional Bratu problems.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/MATHENOT.476799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Kung-Traub conjecture states that an iterative method without memory for locating the zero of a scalar equation could achieve convergence order 2d−1, where d is the total number of function evaluations, but proposed algorithm produces convergence order of r+2, where r is a positive integer with three function evaluations for solving quadratic equations, which is better than expected maximum convergence order. Therefore, we show that the conjecture fails for quadratic equations. Also, we extend proposed algorithm to solving systems which involving quadratic equations. We test our methods with some numerical experiments including application to one dimensional and two dimensional Bratu problems.
二次方程的两点迭代解法及其应用
Kung-Traub猜想指出,一种无内存的迭代方法定位标量方程的零点可以达到2d - 1阶的收敛阶,其中d为函数求值的总次数,但本文算法的收敛阶为r+2,其中r为正整数,有三个函数求值用于求解二次方程,优于预期的最大收敛阶。因此,我们证明了这个猜想对于二次方程是不成立的。同时,我们将所提出的算法扩展到求解涉及二次方程的系统。我们通过一些数值实验来验证我们的方法,包括在一维和二维Bratu问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信