Simplex based Social Spider Optimization Method for Improving Medical Data Analysis

Monalisa Nayak, Soumya Das, U. Bhanja, Manas Ranjan Senapati
{"title":"Simplex based Social Spider Optimization Method for Improving Medical Data Analysis","authors":"Monalisa Nayak, Soumya Das, U. Bhanja, Manas Ranjan Senapati","doi":"10.5121/cseij.2022.12111","DOIUrl":null,"url":null,"abstract":"Accurate and reliable prediction is the only way to prevent the disease transmission. Many machine learning models have been developed for prediction of large scale medical datasets. In this paper, Simplex based Social Spider Optimization method is used for classification of three types of medical datasets like heart disease, echocardiogram and hepatitis. The performance of the model is obtained by using Root Mean Square Error (RMSE) and time.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and reliable prediction is the only way to prevent the disease transmission. Many machine learning models have been developed for prediction of large scale medical datasets. In this paper, Simplex based Social Spider Optimization method is used for classification of three types of medical datasets like heart disease, echocardiogram and hepatitis. The performance of the model is obtained by using Root Mean Square Error (RMSE) and time.
基于单纯形的社会蜘蛛优化方法改进医疗数据分析
准确可靠的预测是预防疾病传播的唯一途径。许多机器学习模型已经被开发用于预测大规模的医疗数据集。本文采用基于单纯形的Social Spider Optimization方法对心脏病、超声心动图和肝炎三种类型的医疗数据集进行分类。利用均方根误差(RMSE)和时间来获得模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信