Detecting Last-Level Cache Contention in Workload Colocation with Meta Learning

Huanxing Shen, Cong Li
{"title":"Detecting Last-Level Cache Contention in Workload Colocation with Meta Learning","authors":"Huanxing Shen, Cong Li","doi":"10.1109/IISWC47752.2019.9041983","DOIUrl":null,"url":null,"abstract":"While workload colocation improves cluster utilization in cloud environments, it introduces performance-impacting contentions on unmanaged resources. We address the problem of detecting the contentions on last-level cache with low level platform counters, but without application performance data. The detection is performed in a noisy environment with a mix of contention cases and non-contention cases, but without the ground truth. We propose a meta-learning approach to discriminate the increase of cache miss metrics taking the cache occupancy data as the precondition. We assume that given a certain workload intensity, when the cache occupancy of the workload drops below its hot data size, increasing cache misses will be observed. Leveraging the assumption, the threshold of cache miss metrics to detect cache interference under the workload intensity is found by inducing the most discriminating rule from the noisy history. Similarly, we determine whether the cache interference impacts performance by discriminating the increase of cycles per instruction metrics with the interference signal. Experimental results indicate that the new approach achieves a decent performance in identifying cache contentions with performance impact in noisy environments.","PeriodicalId":121068,"journal":{"name":"2019 IEEE International Symposium on Workload Characterization (IISWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC47752.2019.9041983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

While workload colocation improves cluster utilization in cloud environments, it introduces performance-impacting contentions on unmanaged resources. We address the problem of detecting the contentions on last-level cache with low level platform counters, but without application performance data. The detection is performed in a noisy environment with a mix of contention cases and non-contention cases, but without the ground truth. We propose a meta-learning approach to discriminate the increase of cache miss metrics taking the cache occupancy data as the precondition. We assume that given a certain workload intensity, when the cache occupancy of the workload drops below its hot data size, increasing cache misses will be observed. Leveraging the assumption, the threshold of cache miss metrics to detect cache interference under the workload intensity is found by inducing the most discriminating rule from the noisy history. Similarly, we determine whether the cache interference impacts performance by discriminating the increase of cycles per instruction metrics with the interference signal. Experimental results indicate that the new approach achieves a decent performance in identifying cache contentions with performance impact in noisy environments.
使用元学习检测工作负载托管中的最后一级缓存争用
虽然工作负载托管提高了云环境中的集群利用率,但它在非托管资源上引入了影响性能的争用。我们解决了用低级平台计数器检测最后一级缓存上的争用的问题,但没有应用程序性能数据。该检测是在混合了争用和非争用情况的嘈杂环境中执行的,但没有真实情况。本文提出了一种以缓存占用数据为前提的元学习方法来判别缓存缺失指标的增加。我们假设给定一定的工作负载强度,当工作负载的缓存占用率低于其热数据大小时,将观察到缓存丢失的增加。利用这一假设,通过从噪声历史中引入最具判别性的规则,找到工作负载强度下检测缓存干扰的缓存缺失指标阈值。同样,我们通过区分每条指令度量周期的增加与干扰信号来确定缓存干扰是否影响性能。实验结果表明,在噪声环境下,新方法在识别影响性能的缓存争用方面取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信