Optimum thresholding for nodule segmentation of lung CT images

Alok Kumar, M. Choudhry
{"title":"Optimum thresholding for nodule segmentation of lung CT images","authors":"Alok Kumar, M. Choudhry","doi":"10.1109/AIC55036.2022.9848878","DOIUrl":null,"url":null,"abstract":"Lung cancer is killing more people throughout the world. This encourages early cancer diagnosis. The first and most important step in detecting cancer using Computer Vision (CV) and Machine Learning (ML) techniques is segmentation of the lung region and, from there, nodules. This research adds to the system of cancer diagnosis based on a CV. This work suggests the use of the optimum thresholding method to improve the initial lung segmentation, and the nodules were then segmented from the segmented lung image using the Active Contour (AC) approach. The Markov Random Field (MRF) approach is used to fine-tune the post-processing following the nodule segmentation procedure. The findings of the experimenting of the recommended lung nodule segmentation technique are shown in the results section.","PeriodicalId":433590,"journal":{"name":"2022 IEEE World Conference on Applied Intelligence and Computing (AIC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World Conference on Applied Intelligence and Computing (AIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIC55036.2022.9848878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is killing more people throughout the world. This encourages early cancer diagnosis. The first and most important step in detecting cancer using Computer Vision (CV) and Machine Learning (ML) techniques is segmentation of the lung region and, from there, nodules. This research adds to the system of cancer diagnosis based on a CV. This work suggests the use of the optimum thresholding method to improve the initial lung segmentation, and the nodules were then segmented from the segmented lung image using the Active Contour (AC) approach. The Markov Random Field (MRF) approach is used to fine-tune the post-processing following the nodule segmentation procedure. The findings of the experimenting of the recommended lung nodule segmentation technique are shown in the results section.
肺CT图像结节分割的最佳阈值分割
全世界死于肺癌的人越来越多。这鼓励早期癌症诊断。使用计算机视觉(CV)和机器学习(ML)技术检测癌症的第一步也是最重要的一步是对肺区域进行分割,并从那里提取结节。这项研究增加了基于CV的癌症诊断系统。本工作建议使用最佳阈值方法来改进初始肺分割,然后使用活动轮廓(AC)方法从分割后的肺图像中分割结节。采用马尔可夫随机场(MRF)方法对结节分割过程后的后处理进行微调。推荐的肺结节分割技术的实验结果显示在结果部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信