Data-driven kinodynamic RRT

Junghwan Lee, Heechan Shin, Sung-eui Yoon
{"title":"Data-driven kinodynamic RRT","authors":"Junghwan Lee, Heechan Shin, Sung-eui Yoon","doi":"10.1109/ICAR.2017.8023501","DOIUrl":null,"url":null,"abstract":"We present a novel, data-driven kinodynamic motion planner. Our sampling-based planner is based on using a physics simulator as a black box to compute a trajectory considering dynamics, even when we cannot derive exact propagation functions. To improve its overall efficiency, we pre-compute a motion database containing different motions simulated with different controls and states defined in the local frame of a robot. We then use the motion database to efficiently estimate the simulated trajectory during iterations of our planner. When the planner requests the best control to reach a desired state from a query state, we retrieve nearby motions that are close to the query state and pick the motion that is closest to the desired state for the tree extension. To control accuracy of our planner with a high efficiency, we lazily validate retrieved motions. The pre-constructed motion database contains modular trajectories and thus can be reused for other test cases, where we have different composition of obstacles or different start/goal states.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel, data-driven kinodynamic motion planner. Our sampling-based planner is based on using a physics simulator as a black box to compute a trajectory considering dynamics, even when we cannot derive exact propagation functions. To improve its overall efficiency, we pre-compute a motion database containing different motions simulated with different controls and states defined in the local frame of a robot. We then use the motion database to efficiently estimate the simulated trajectory during iterations of our planner. When the planner requests the best control to reach a desired state from a query state, we retrieve nearby motions that are close to the query state and pick the motion that is closest to the desired state for the tree extension. To control accuracy of our planner with a high efficiency, we lazily validate retrieved motions. The pre-constructed motion database contains modular trajectories and thus can be reused for other test cases, where we have different composition of obstacles or different start/goal states.
数据驱动的动态RRT
我们提出了一种新颖的,数据驱动的运动规划器。我们基于采样的规划是基于使用物理模拟器作为黑盒来计算考虑动力学的轨迹,即使我们不能推导出精确的传播函数。为了提高其整体效率,我们预先计算了一个运动数据库,其中包含机器人局部框架中定义的不同控制和状态所模拟的不同运动。然后,我们使用运动数据库在规划器迭代期间有效地估计模拟轨迹。当规划器请求最佳控制以从查询状态达到所需状态时,我们检索接近查询状态的附近运动,并为树扩展选择最接近所需状态的运动。为了高效率地控制规划器的精度,我们对检索到的运动进行了惰性验证。预构建的运动数据库包含模块化轨迹,因此可以在其他测试用例中重用,其中我们有不同的障碍组合或不同的开始/目标状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信