Body Part Detection for Human Pose Estimation and Tracking

M. Lee, R. Nevatia
{"title":"Body Part Detection for Human Pose Estimation and Tracking","authors":"M. Lee, R. Nevatia","doi":"10.1109/WMVC.2007.10","DOIUrl":null,"url":null,"abstract":"Accurate 3-D human body pose tracking from a monocular video stream is important for a number of applications. We describe a novel hierarchical approach for tracking human pose that uses edge-based features during the coarse stage and later other features for global optimization. At first, humans are detected by motion and tracked by fitting an ellipse in the image. Then, body components are found using edge features and used to estimate the 2D positions of the body joints accurately. This helps to bootstrap the estimation of 3D pose using a sampling-based search method in the last stage. We present experiment results with sequences of different realistic scenes to illustrate the performance of the method.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Accurate 3-D human body pose tracking from a monocular video stream is important for a number of applications. We describe a novel hierarchical approach for tracking human pose that uses edge-based features during the coarse stage and later other features for global optimization. At first, humans are detected by motion and tracked by fitting an ellipse in the image. Then, body components are found using edge features and used to estimate the 2D positions of the body joints accurately. This helps to bootstrap the estimation of 3D pose using a sampling-based search method in the last stage. We present experiment results with sequences of different realistic scenes to illustrate the performance of the method.
人体姿态估计与跟踪的身体部位检测
从单目视频流中精确的三维人体姿态跟踪对于许多应用都很重要。我们描述了一种新的分层方法来跟踪人体姿态,该方法在粗化阶段使用基于边缘的特征,然后使用其他特征进行全局优化。首先,通过运动检测人类,并通过拟合图像中的椭圆来跟踪人类。然后,利用边缘特征找到车身部件,用于准确估计车身关节的二维位置;这有助于在最后阶段使用基于采样的搜索方法来引导三维姿态的估计。我们给出了不同真实场景序列的实验结果来说明该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信