Detecting the Abnormal SQL Query Using Hybrid SVM Classification Technique in Web Application

S. R, Suriakala M
{"title":"Detecting the Abnormal SQL Query Using Hybrid SVM Classification Technique in Web Application","authors":"S. R, Suriakala M","doi":"10.20894/ijdmta.102.009.001.009","DOIUrl":null,"url":null,"abstract":"Detecting SQL injection attacks (SQLIAs) is ending up progressively significant in database-driven sites. A large portion of the investigations on SQLIA detection have concentrated on the structured query language (SQL) structure at the application level. Yet, those methodologies unavoidably neglects to identify those attacks that utilization previously put away methodology and information inside the database framework. While most existing techniques tended to towards diminishing the quantity of support vectors, the proposed philosophy concentrated on decreasing the quantity of test datapoints that need SVMs assistance in getting grouped. The focal thought is to inexact the choice limit of SVM utilizing paired trees. The subsequent tree is a half and half tree as in it has both univariate and multivariate (SVM) nodes. The cross breed tree takes SVMs assistance just in ordering significant information focuses lying close choice limit staying less urgent datapoints are grouped by quick univariate nodes.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/ijdmta.102.009.001.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting SQL injection attacks (SQLIAs) is ending up progressively significant in database-driven sites. A large portion of the investigations on SQLIA detection have concentrated on the structured query language (SQL) structure at the application level. Yet, those methodologies unavoidably neglects to identify those attacks that utilization previously put away methodology and information inside the database framework. While most existing techniques tended to towards diminishing the quantity of support vectors, the proposed philosophy concentrated on decreasing the quantity of test datapoints that need SVMs assistance in getting grouped. The focal thought is to inexact the choice limit of SVM utilizing paired trees. The subsequent tree is a half and half tree as in it has both univariate and multivariate (SVM) nodes. The cross breed tree takes SVMs assistance just in ordering significant information focuses lying close choice limit staying less urgent datapoints are grouped by quick univariate nodes.
Web应用中基于混合SVM分类技术的异常SQL查询检测
在数据库驱动的站点中,检测SQL注入攻击(sqlia)变得越来越重要。关于SQLIA检测的大部分研究都集中在应用程序级别的结构化查询语言(SQL)结构上。然而,这些方法不可避免地忽略了识别那些利用以前将方法和信息隐藏在数据库框架内的攻击。虽然大多数现有的技术倾向于减少支持向量的数量,但建议的哲学集中在减少需要支持向量机帮助进行分组的测试数据点的数量。重点是利用配对树确定支持向量机的选择范围。随后的树是半树和半树,因为它同时具有单变量和多变量(SVM)节点。杂交树在排序重要信息方面得到支持向量机的帮助,这些重要信息集中在接近选择限制的位置,而不太紧急的数据点由快速单变量节点分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信