Induction Tree methods to classify M. tuberculosis spoligotypes

Georges Valétudie
{"title":"Induction Tree methods to classify M. tuberculosis spoligotypes","authors":"Georges Valétudie","doi":"10.1109/CIDM.2007.368859","DOIUrl":null,"url":null,"abstract":"In this paper we compared and analyzed four graph induction methods to automatically classify spoligotypes. A spoligotype is a sequence of 43 binary values provided by a DNA analysis technique. This method is known to be useful and efficient to many supervised learning problems. We found it interesting to use these techniques especially for sequential data, in order to create a classifier based on one decision rule per class","PeriodicalId":423707,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Data Mining","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2007.368859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we compared and analyzed four graph induction methods to automatically classify spoligotypes. A spoligotype is a sequence of 43 binary values provided by a DNA analysis technique. This method is known to be useful and efficient to many supervised learning problems. We found it interesting to use these techniques especially for sequential data, in order to create a classifier based on one decision rule per class
诱导树法分类结核分枝杆菌孢子型
本文比较和分析了四种图归纳法在spoligotypes自动分类中的应用。spoligotype是由DNA分析技术提供的43个二值序列。这种方法对于许多监督学习问题都是有用和有效的。我们发现使用这些技术非常有趣,特别是对于顺序数据,以便基于每个类的一个决策规则创建分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信