Combining different off-line handwritten character recognizers

C. Travieso, J. B. Alonso, Miguel A. Ferrer
{"title":"Combining different off-line handwritten character recognizers","authors":"C. Travieso, J. B. Alonso, Miguel A. Ferrer","doi":"10.1109/INES.2011.5954765","DOIUrl":null,"url":null,"abstract":"This present work presents a recognizer based on the combination of three Support Vector Machine (SVM) classifiers whose inputs have different parameters from characters. The three approaches of feature extraction for handwritten off-line digits, capital letters and lower case letters, have been chosen for improving the combination using database NIST-SD19. We have applied pre-processing in order to achieve greater inter-class discrimination and similarity. These three feature extractions are based on Kirsch masks with and without slant correction and Fourier elliptic descriptors.","PeriodicalId":414812,"journal":{"name":"2011 15th IEEE International Conference on Intelligent Engineering Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 15th IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2011.5954765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This present work presents a recognizer based on the combination of three Support Vector Machine (SVM) classifiers whose inputs have different parameters from characters. The three approaches of feature extraction for handwritten off-line digits, capital letters and lower case letters, have been chosen for improving the combination using database NIST-SD19. We have applied pre-processing in order to achieve greater inter-class discrimination and similarity. These three feature extractions are based on Kirsch masks with and without slant correction and Fourier elliptic descriptors.
结合不同的离线手写字符识别器
本文提出了一种基于三个支持向量机(SVM)分类器组合的识别器,这些分类器的输入具有不同的字符参数。采用NIST-SD19数据库对手写离线数字(大写字母和小写字母)的三种特征提取方法进行组合改进。为了实现更大的类间区分和相似性,我们应用了预处理。这三种特征提取分别基于Kirsch掩模和傅里叶椭圆描述子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信