Occlusion-robust 3D face recognition using restoration and local classifiers

N. Alyuz, B. Gokberk, L. Spreeuwers, R. Veldhuis, L. Akarun
{"title":"Occlusion-robust 3D face recognition using restoration and local classifiers","authors":"N. Alyuz, B. Gokberk, L. Spreeuwers, R. Veldhuis, L. Akarun","doi":"10.1109/SIU.2011.5929759","DOIUrl":null,"url":null,"abstract":"Occlusions complicate the process of identifying individuals using their 3D facial scans. We propose a 3D face recognition system that automatically removes occlusion artifacts and identifies the facial image using regional classifiers. Automatic localization of occluded areas is handled by using a generic face model. Restoration of missing information after occlusion removal is performed by the application of an improved version of Gappy Principal Component Analysis (GPCA), which we call partial Gappy PCA (pGPCA). After the removal of noisy data introduced by realistic occlusions, occlusion-free faces are represented by local regions. Local classifiers operating on these local regions are then fused to achieve occlusion-robust identification performance. Our experimental results obtained on realistically occluded facial images from the Bosphorus 3D face database illustrate that our occlusion compensation scheme drastically improves the recognition accuracy from 78.05% to 94.20%.","PeriodicalId":114797,"journal":{"name":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2011.5929759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Occlusions complicate the process of identifying individuals using their 3D facial scans. We propose a 3D face recognition system that automatically removes occlusion artifacts and identifies the facial image using regional classifiers. Automatic localization of occluded areas is handled by using a generic face model. Restoration of missing information after occlusion removal is performed by the application of an improved version of Gappy Principal Component Analysis (GPCA), which we call partial Gappy PCA (pGPCA). After the removal of noisy data introduced by realistic occlusions, occlusion-free faces are represented by local regions. Local classifiers operating on these local regions are then fused to achieve occlusion-robust identification performance. Our experimental results obtained on realistically occluded facial images from the Bosphorus 3D face database illustrate that our occlusion compensation scheme drastically improves the recognition accuracy from 78.05% to 94.20%.
基于恢复和局部分类器的遮挡鲁棒3D人脸识别
闭塞使使用3D面部扫描识别个体的过程变得复杂。我们提出了一种3D人脸识别系统,该系统可以自动去除遮挡伪影并使用区域分类器识别人脸图像。利用通用人脸模型对遮挡区域进行自动定位。遮挡去除后缺失信息的恢复是通过应用改进版的Gappy主成分分析(GPCA)来完成的,我们称之为部分Gappy PCA (pGPCA)。在去除真实遮挡引入的噪声数据后,用局部区域表示无遮挡的人脸。然后融合在这些局部区域上运行的局部分类器以实现闭塞鲁棒识别性能。对博斯普鲁斯海峡3D人脸数据库中真实遮挡的人脸图像进行的实验结果表明,遮挡补偿方案将识别准确率从78.05%提高到94.20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信