Detection of fake 3D video using CNN

Shuvendu Rana, S. Gaj, A. Sur, P. Bora
{"title":"Detection of fake 3D video using CNN","authors":"Shuvendu Rana, S. Gaj, A. Sur, P. Bora","doi":"10.1109/MMSP.2016.7813368","DOIUrl":null,"url":null,"abstract":"In this paper, a novel automatic fake and the real 3D video recognition scheme is proposed to distinguish the 3D video converted from the 2D video using 2D to 3D conversion process (say fake 3D) from the 3D video captured using direct capturing of the 3D camera (say real 3D). To identify the real and fake 3D, pre-filtration is done using the dual tree complex wavelet transform to emerge the edge and vertical and horizontal parallax characteristics of real and fake 3D videos. Convolution neural network (CNN) is used to train the 3D characteristics to distinguish the fake 3D videos from the real ones. A comprehensive set of experiments has been carried out to justify the efficacy of the proposed scheme over the existing literature.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a novel automatic fake and the real 3D video recognition scheme is proposed to distinguish the 3D video converted from the 2D video using 2D to 3D conversion process (say fake 3D) from the 3D video captured using direct capturing of the 3D camera (say real 3D). To identify the real and fake 3D, pre-filtration is done using the dual tree complex wavelet transform to emerge the edge and vertical and horizontal parallax characteristics of real and fake 3D videos. Convolution neural network (CNN) is used to train the 3D characteristics to distinguish the fake 3D videos from the real ones. A comprehensive set of experiments has been carried out to justify the efficacy of the proposed scheme over the existing literature.
利用CNN检测假3D视频
本文提出了一种新的自动真假3D视频识别方案,用于区分通过2D到3D转换过程转换的2D视频(即假3D)和通过3D摄像机直接捕获的3D视频(即真3D)。为了识别真假3D,利用对偶树复小波变换进行预滤波,得到真假3D视频的边缘和纵横视差特征。利用卷积神经网络(CNN)训练3D特征,区分真假3D视频。一套全面的实验已经进行,以证明所提出的方案优于现有文献的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信