Iterative Image Translation for Unsupervised Domain Adaptation

S. Chhabra, Hemanth Venkateswara, Baoxin Li
{"title":"Iterative Image Translation for Unsupervised Domain Adaptation","authors":"S. Chhabra, Hemanth Venkateswara, Baoxin Li","doi":"10.1145/3476098.3485050","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an image-translation-based unsupervised domain adaptation approach that iteratively trains an image translation and a classification network using each other. In Phase A, a classification network is used to guide the image translation to preserve the content and generate images. In Phase B, the generated images are used to train the classification network. With each step, the classification network and generator improve each other to learn the target domain representation. Detailed analysis and the experiments are testimony of the strength of our approach.","PeriodicalId":390904,"journal":{"name":"Multimedia Understanding with Less Labeling on Multimedia Understanding with Less Labeling","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Understanding with Less Labeling on Multimedia Understanding with Less Labeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476098.3485050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an image-translation-based unsupervised domain adaptation approach that iteratively trains an image translation and a classification network using each other. In Phase A, a classification network is used to guide the image translation to preserve the content and generate images. In Phase B, the generated images are used to train the classification network. With each step, the classification network and generator improve each other to learn the target domain representation. Detailed analysis and the experiments are testimony of the strength of our approach.
基于无监督域自适应的迭代图像翻译
在本文中,我们提出了一种基于图像翻译的无监督域自适应方法,该方法迭代地训练图像翻译和分类网络。在阶段A中,使用分类网络来引导图像翻译以保留内容并生成图像。在阶段B中,生成的图像用于训练分类网络。在每一步中,分类网络和生成器相互改进以学习目标域表示。详细的分析和实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信