Work-in-Progress: What to Expect of Early Training Statistics? An Investigation on Hardware-Aware Neural Architecture Search

Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu
{"title":"Work-in-Progress: What to Expect of Early Training Statistics? An Investigation on Hardware-Aware Neural Architecture Search","authors":"Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu","doi":"10.1109/CODES-ISSS55005.2022.00007","DOIUrl":null,"url":null,"abstract":"Neural architecture search (NAS) is an emerging paradigm to automate the design of top-performing deep neural networks (DNNs). Specifically, the increasing success of NAS is attributed to the reliable performance estimation of different architectures. Despite significant progress to date, previous relevant methods suffer from prohibitive computational overheads. To avoid this, we propose an effective yet computationally efficient proxy, namely Trained Batchwise Estimation (TBE), to reliably estimate the performance of different architectures using the early batchwise training statistics. We then integrate TBE into the hardware-aware NAS scenario to search for hardware-efficient architecture solutions. Experimental results clearly show the superiority of TBE over previous relevant state-of-the-art approaches.","PeriodicalId":129167,"journal":{"name":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS55005.2022.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural architecture search (NAS) is an emerging paradigm to automate the design of top-performing deep neural networks (DNNs). Specifically, the increasing success of NAS is attributed to the reliable performance estimation of different architectures. Despite significant progress to date, previous relevant methods suffer from prohibitive computational overheads. To avoid this, we propose an effective yet computationally efficient proxy, namely Trained Batchwise Estimation (TBE), to reliably estimate the performance of different architectures using the early batchwise training statistics. We then integrate TBE into the hardware-aware NAS scenario to search for hardware-efficient architecture solutions. Experimental results clearly show the superiority of TBE over previous relevant state-of-the-art approaches.
正在进行的工作:对早期培训统计的期望是什么?基于硬件感知的神经结构搜索研究
神经架构搜索(NAS)是一种新兴的范例,用于自动化设计高性能的深度神经网络(dnn)。具体来说,NAS的日益成功归功于对不同架构的可靠性能估计。尽管迄今为止取得了重大进展,但以前的相关方法存在令人望而却步的计算开销。为了避免这种情况,我们提出了一种有效且计算效率高的代理,即训练批量估计(TBE),它可以使用早期的批量训练统计数据可靠地估计不同架构的性能。然后,我们将TBE集成到硬件感知的NAS场景中,以寻找硬件高效的体系结构解决方案。实验结果清楚地表明,该方法优于以往相关的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信