On the Number of Edges in a 3-Uniform Hypergraph with No (k + 1)-Connected Hypersubgraphs

Qinglin Wang, Yingzhi Tian, Lihua Feng
{"title":"On the Number of Edges in a 3-Uniform Hypergraph with No (k + 1)-Connected Hypersubgraphs","authors":"Qinglin Wang, Yingzhi Tian, Lihua Feng","doi":"10.1142/s0219265921420202","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a hypergraph, where [Formula: see text] is a set of vertices and [Formula: see text] is a set of non-empty subsets of [Formula: see text] called edges. If all edges of [Formula: see text] have the same cardinality [Formula: see text], then [Formula: see text] is an [Formula: see text]-uniform hypergraph. A hypergraph [Formula: see text] is called a hypersubgraph of a hypergraph [Formula: see text] if [Formula: see text] and [Formula: see text]. The [Formula: see text]-[Formula: see text] of hypergraph [Formula: see text], denoted by [Formula: see text], is the cardinality of a minimum vertex set [Formula: see text] such that [Formula: see text] is disconnected or is a trival hypergraph. We call [Formula: see text] [Formula: see text]-[Formula: see text] if [Formula: see text]. Tian, Lai and Meng [Y. Z. Tian, H.-J. Lai, J. X. Meng, On the sizes of vertex-[Formula: see text]-maximal [Formula: see text]-uniform hypergraphs, Graphs and Combinatorics 35(5) (2019) 1001–1010] conjectered that, for sufficiently large [Formula: see text], every [Formula: see text]-vertex [Formula: see text]-uniform hypergraph with no [Formula: see text]-connected hypersubgraphs has at most [Formula: see text] edges. This upper bound is equal to [Formula: see text] when [Formula: see text]. In this paper, we prove that for [Formula: see text] and [Formula: see text], every [Formula: see text]-vertex [Formula: see text]-uniform hypergraph with no [Formula: see text]-connected hypersubgraphs has at most [Formula: see text] edges.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921420202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a hypergraph, where [Formula: see text] is a set of vertices and [Formula: see text] is a set of non-empty subsets of [Formula: see text] called edges. If all edges of [Formula: see text] have the same cardinality [Formula: see text], then [Formula: see text] is an [Formula: see text]-uniform hypergraph. A hypergraph [Formula: see text] is called a hypersubgraph of a hypergraph [Formula: see text] if [Formula: see text] and [Formula: see text]. The [Formula: see text]-[Formula: see text] of hypergraph [Formula: see text], denoted by [Formula: see text], is the cardinality of a minimum vertex set [Formula: see text] such that [Formula: see text] is disconnected or is a trival hypergraph. We call [Formula: see text] [Formula: see text]-[Formula: see text] if [Formula: see text]. Tian, Lai and Meng [Y. Z. Tian, H.-J. Lai, J. X. Meng, On the sizes of vertex-[Formula: see text]-maximal [Formula: see text]-uniform hypergraphs, Graphs and Combinatorics 35(5) (2019) 1001–1010] conjectered that, for sufficiently large [Formula: see text], every [Formula: see text]-vertex [Formula: see text]-uniform hypergraph with no [Formula: see text]-connected hypersubgraphs has at most [Formula: see text] edges. This upper bound is equal to [Formula: see text] when [Formula: see text]. In this paper, we prove that for [Formula: see text] and [Formula: see text], every [Formula: see text]-vertex [Formula: see text]-uniform hypergraph with no [Formula: see text]-connected hypersubgraphs has at most [Formula: see text] edges.
无(k + 1)连通超图的3-一致超图的边数
设[Formula: see text]为超图,其中[Formula: see text]是顶点的集合,[Formula: see text]是[Formula: see text]的非空子集的集合,称为边。如果[Formula: see text]的所有边具有相同的基数[Formula: see text],则[Formula: see text]是一个[Formula: see text]-均匀超图。如果[公式:见文]和[公式:见文],则超图[公式:见文]称为超图[公式:见文]的超子图。[公式:见文]-超图[公式:见文]的[公式:见文],用[公式:见文]表示,是一个最小顶点集[公式:见文]的基数,使得[公式:见文]是不相连的或者是一个平凡的超图。我们称[公式:见文][公式:见文]-[公式:见文]如果[公式:见文]。田,赖,孟[Y]。田志杰,h - j。Lai, J. X. Meng,关于顶点的大小-[公式:见文]-极大[公式:见文]-均匀超图,图与组合35(5)(2019)1001-1010]推测,对于足够大的[公式:见文],每个[公式:见文]-顶点[公式:见文]-均匀超图没有[公式:见文]-连通超图最多有[公式:见文]条边。当[公式:见文]时,这个上界等于[公式:见文]。本文证明了对于[公式:见文]和[公式:见文],每个[公式:见文]-顶点[公式:见文]-没有[公式:见文]-连通超子图的一致超图最多有[公式:见文]条边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信