Peningkatan Ketepatan Klasifikasi Model Regresi Logistik Biner dengan Metode Bagging (Bootstrap Aggregating)

Dwi Liana Wella Putri, Scolastika Mariani, S. Sunarmi
{"title":"Peningkatan Ketepatan Klasifikasi Model Regresi Logistik Biner dengan Metode Bagging (Bootstrap Aggregating)","authors":"Dwi Liana Wella Putri, Scolastika Mariani, S. Sunarmi","doi":"10.15294/ijmns.v44i2.33144","DOIUrl":null,"url":null,"abstract":"Tujuan penelitian ini adalah mengetahui ketepatan klasifikasi regresi logistik dan bagging (bootstrap aggregating) regresi logistik biner pada status peserta KB Kota Tegal tahun 2016 serta mengetahui model terbaik regresi logistik biner. Penelitian ini melakukan estimasi status peserta KB Kota Tegal dengan metode maximum likelihood estimation disertai dengan algoritma newton raphson, dilanjutkan dengan pengujian signifikansi parameter baik secara simultan dengan Uji likelihood ratio dan parsial dengan uji wald. Selanjutnya uji kesesuaian model menggunakan Hosmer dan Lemeshow, uji ketepatan klasifikasi regresi logistik biner dan bootstrap aggregating, dan pemilihan model terbaik dengan melihat nilai ketepatan klasifikasi tertinggi dengan tingkat kesalahan terkecil. Software yang digunakan adalah program R 3.4.1. Disimpulkan, ketepatan klasifikasi metode bagging (bootstrap aggregating) sebesar 75,641% dengan kesalahan klasifikasi 24,359%. Metode bagging (bootstrap aggregating) meningkatkan ketepatan klasifikasi pada model regresi logistik biner dengan nilai ketepatan klasifikasi pada model regresi logistik biner 69,74% meningkat menjadi 75,641%. Model yang terbaik adalah model regresi logistik biner dengan menggunakan bagging (bootstrap aggregating).","PeriodicalId":412942,"journal":{"name":"Indonesian Journal of Mathematics and Natural Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Mathematics and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/ijmns.v44i2.33144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tujuan penelitian ini adalah mengetahui ketepatan klasifikasi regresi logistik dan bagging (bootstrap aggregating) regresi logistik biner pada status peserta KB Kota Tegal tahun 2016 serta mengetahui model terbaik regresi logistik biner. Penelitian ini melakukan estimasi status peserta KB Kota Tegal dengan metode maximum likelihood estimation disertai dengan algoritma newton raphson, dilanjutkan dengan pengujian signifikansi parameter baik secara simultan dengan Uji likelihood ratio dan parsial dengan uji wald. Selanjutnya uji kesesuaian model menggunakan Hosmer dan Lemeshow, uji ketepatan klasifikasi regresi logistik biner dan bootstrap aggregating, dan pemilihan model terbaik dengan melihat nilai ketepatan klasifikasi tertinggi dengan tingkat kesalahan terkecil. Software yang digunakan adalah program R 3.4.1. Disimpulkan, ketepatan klasifikasi metode bagging (bootstrap aggregating) sebesar 75,641% dengan kesalahan klasifikasi 24,359%. Metode bagging (bootstrap aggregating) meningkatkan ketepatan klasifikasi pada model regresi logistik biner dengan nilai ketepatan klasifikasi pada model regresi logistik biner 69,74% meningkat menjadi 75,641%. Model yang terbaik adalah model regresi logistik biner dengan menggunakan bagging (bootstrap aggregating).
增加与Bagging方法的二元物流回归模型的分类准确性
本研究的目的是确定2016年Tegal市避孕状况的二元物流回归和bagging (bootstrap aggregating)的准确分类,并确定二进制物流回归的最佳模式。这项研究通过最大限度的估计,Tegal城市KB的参与者状态,再加上牛顿raphson的算法,然后用沃尔德线色度和部分测试参数的重要性。接下来,用Hosmer和Lemeshow测试模型的一致性,用二进制和bootstrap攻击物流的微分分级测试,通过观察最高的分类精确度和最小的错误水平来选择最好的模型。正在使用的软件是R 3.4.1程序。总结一下,bagging方法的分类精度为75.641%,共24359%。bagging方法(bootstrap aggregating)增加了二进制回归物流模型的分类精度,与69.74%二元回归物流值的分类值增加到75.641%。最好的模型是使用bagging(引导入侵)的二元物流回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信