NeuPow: artificial neural networks for power and behavioral modeling of arithmetic components in 45nm ASICs technology

Y. Nasser, Carlo Sau, Jean-Christophe Prévotet, Tiziana Fanni, F. Palumbo, M. Hélard, L. Raffo
{"title":"NeuPow: artificial neural networks for power and behavioral modeling of arithmetic components in 45nm ASICs technology","authors":"Y. Nasser, Carlo Sau, Jean-Christophe Prévotet, Tiziana Fanni, F. Palumbo, M. Hélard, L. Raffo","doi":"10.1145/3310273.3322820","DOIUrl":null,"url":null,"abstract":"In this paper, we present a flexible, simple and accurate power modeling technique that can be used to estimate the power consumption of modern technology devices. We exploit Artificial Neural Networks for power and behavioral estimation in Application Specific Integrated Circuits. Our method, called NeuPow, relies on propagating the predictors between the connected neural models to estimate the dynamic power consumption of the individual components. As a first proof of concept, to study the effectiveness of NeuPow, we run both component level and system level tests on the Open GPDK 45 nm technology from Cadence, achieving errors below 1.5% and 9% respectively for component and system level. In addition, NeuPow demonstrated a speed up factor of 2490X.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3322820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a flexible, simple and accurate power modeling technique that can be used to estimate the power consumption of modern technology devices. We exploit Artificial Neural Networks for power and behavioral estimation in Application Specific Integrated Circuits. Our method, called NeuPow, relies on propagating the predictors between the connected neural models to estimate the dynamic power consumption of the individual components. As a first proof of concept, to study the effectiveness of NeuPow, we run both component level and system level tests on the Open GPDK 45 nm technology from Cadence, achieving errors below 1.5% and 9% respectively for component and system level. In addition, NeuPow demonstrated a speed up factor of 2490X.
NeuPow:用于45nm asic技术中算法组件功率和行为建模的人工神经网络
本文提出了一种灵活、简单、准确的功率建模技术,可用于估算现代技术器件的功耗。我们利用人工神经网络在专用集成电路中进行功率和行为估计。我们的方法,称为NeuPow,依靠在连接的神经模型之间传播预测器来估计单个组件的动态功耗。作为第一个概念验证,为了研究NeuPow的有效性,我们在Cadence的Open GPDK 45 nm技术上运行了组件级和系统级测试,组件级和系统级的误差分别低于1.5%和9%。此外,NeuPow还展示了2490X的加速系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信