Image compression using auto-associative neural network and embedded zero-tree coding

S. Patnaik, R. Pal
{"title":"Image compression using auto-associative neural network and embedded zero-tree coding","authors":"S. Patnaik, R. Pal","doi":"10.1109/SPAWC.2001.923933","DOIUrl":null,"url":null,"abstract":"This paper presents an image compression method using auto-associative neural network and embedded zero-tree coding. The role of the neural network (NN) is to decompose the image stage by stage, which enables analysis similar to wavelet decomposition. This works on the principle of principal component extraction (PCE). Network training is achieved through a recursive least squares (RLS) algorithm. The coefficients are arranged in a four-quadrant sub-band structure. The zero-tree coding algorithm is employed to quantize the coefficients. The system outperforms the embedded zero-tree wavelet scheme in a rate-distortion sense, with best perceptual quality for a given compression ratio.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an image compression method using auto-associative neural network and embedded zero-tree coding. The role of the neural network (NN) is to decompose the image stage by stage, which enables analysis similar to wavelet decomposition. This works on the principle of principal component extraction (PCE). Network training is achieved through a recursive least squares (RLS) algorithm. The coefficients are arranged in a four-quadrant sub-band structure. The zero-tree coding algorithm is employed to quantize the coefficients. The system outperforms the embedded zero-tree wavelet scheme in a rate-distortion sense, with best perceptual quality for a given compression ratio.
图像压缩采用自关联神经网络和嵌入式零树编码
提出了一种基于自关联神经网络和嵌入式零树编码的图像压缩方法。神经网络(NN)的作用是逐步分解图像,使分析类似于小波分解。这是基于主成分提取(PCE)的原理。通过递归最小二乘(RLS)算法实现网络训练。系数以四象限子带结构排列。采用零树编码算法对系数进行量化。该系统在率失真方面优于嵌入式零树小波方案,在给定的压缩比下具有最佳的感知质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信