{"title":"Protein model assessment via machine learning techniques","authors":"Anjum Reyaz-Ahmed, R. Harrison, Yanqing Zhang","doi":"10.1504/IJFIPM.2010.039121","DOIUrl":null,"url":null,"abstract":"We attempt to solve the problem of protein model assessment using machine learning techniques and information from sequence and structure of the protein. The goal is to generate a machine that understands structures from PDB and given a new model, predicts whether or not it belongs to the class of PDB structures. We show two such machines (SVM and FDT); results appear promising for further analysis. To reduce computational overhead, multiprocessor environment and basic feature selection method is used. The prediction accuracy using improved FDT is above 80% and results are better when compared with other machine learning techniques.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2010.039121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We attempt to solve the problem of protein model assessment using machine learning techniques and information from sequence and structure of the protein. The goal is to generate a machine that understands structures from PDB and given a new model, predicts whether or not it belongs to the class of PDB structures. We show two such machines (SVM and FDT); results appear promising for further analysis. To reduce computational overhead, multiprocessor environment and basic feature selection method is used. The prediction accuracy using improved FDT is above 80% and results are better when compared with other machine learning techniques.